Spaces:
Runtime error
Runtime error
File size: 17,861 Bytes
a50f42c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import json
import logging
from typing import List, Any
import copy
import torch
from torch.utils.data import Dataset
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer
from util.process_data import Sample, Entity, EntityType, EntityTypeSet, SampleList, Token, Relation
from util.configuration import InferenceConfiguration
valid_relations = { # head : [tail, ...]
"StatedKeyFigure": ["StatedKeyFigure", "Condition", "StatedExpression", "DeclarativeExpression"],
"DeclarativeKeyFigure": ["DeclarativeKeyFigure", "Condition", "StatedExpression", "DeclarativeExpression"],
"StatedExpression": ["Unit", "Factor", "Range", "Condition"],
"DeclarativeExpression": ["DeclarativeExpression", "Unit", "Factor", "Range", "Condition"],
"Condition": ["Condition", "StatedExpression", "DeclarativeExpression"],
"Range": ["Range"]
}
class TokenClassificationDataset(Dataset):
""" Pytorch Dataset """
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
class TransformersInference():
def __init__(self, config: InferenceConfiguration):
super().__init__()
self.__logger = logging.getLogger(self.__class__.__name__)
self.__logger.info(f"Load Configuration: {config.dict()}")
with open(f"classification.json", mode='r', encoding="utf-8") as f:
self.__entity_type_set = EntityTypeSet.parse_obj(json.load(f))
self.__entity_type_label_to_id_mapping = {x.label: x.idx for x in self.__entity_type_set.all_types()}
self.__entity_type_id_to_label_mapping = {x.idx: x.label for x in self.__entity_type_set.all_types()}
self.__logger.info("Load Model: " + config.model_path_keyfigure)
self.__tokenizer = AutoTokenizer.from_pretrained(config.transformer_model,
padding="max_length", max_length=512, truncation=True)
self.__model = AutoModelForTokenClassification.from_pretrained(config.model_path_keyfigure, num_labels=(
len(self.__entity_type_set)))
self.__trainer = Trainer(model=self.__model)
self.__merge_entities = config.merge_entities
self.__split_len = config.split_len
self.__extract_relations = config.extract_relations
# add special tokens
entity_groups = self.__entity_type_set.groups
num_entity_groups = len(entity_groups)
lst_special_tokens = ["[REL]", "[SUB]", "[/SUB]", "[OBJ]", "[/OBJ]"]
for grp_idx, grp in enumerate(entity_groups):
lst_special_tokens.append(f"[GRP-{grp_idx:02d}]")
lst_special_tokens.extend([f"[ENT-{ent:02d}]" for ent in grp if ent != self.__entity_type_set.id_of_non_entity])
lst_special_tokens.extend([f"[/ENT-{ent:02d}]" for ent in grp if ent != self.__entity_type_set.id_of_non_entity])
lst_special_tokens = sorted(list(set(lst_special_tokens)))
special_tokens_dict = {'additional_special_tokens': lst_special_tokens }
num_added_toks = self.__tokenizer.add_special_tokens(special_tokens_dict)
self.__logger.info(f"Added {num_added_toks} new special tokens. All special tokens: '{self.__tokenizer.all_special_tokens}'")
self.__logger.info("Initialization completed.")
def run_inference(self, sample_list: SampleList):
group_predictions = []
group_entity_ids = []
self.__logger.info("Predict Entities ...")
for grp_idx, grp in enumerate(self.__entity_type_set.groups):
token_lists = [[x.text for x in sample.tokens] for sample in sample_list.samples]
predictions = self.__get_predictions(token_lists, f"[GRP-{grp_idx:02d}]")
group_entity_ids_ = []
for sample, prediction_per_tokens in zip(sample_list.samples, predictions):
group_entity_ids_.append(self.generate_response_entities(sample, prediction_per_tokens, grp_idx))
group_predictions.append(predictions)
group_entity_ids.append(group_entity_ids_)
if self.__extract_relations:
self.__logger.info("Predict Relations ...")
self.__do_extract_relations(sample_list, group_predictions, group_entity_ids)
def __do_extract_relations(self, sample_list, group_predictions, group_entity_ids):
id_of_non_entity = self.__entity_type_set.id_of_non_entity
for sample_idx, sample in enumerate(sample_list.samples):
masked_tokens = []
masked_tokens_align = []
# create SUB-Mask for every entity that can be a head
head_entities = [entity_ for entity_ in sample.entities if entity_.ent_type.label in list(valid_relations.keys())]
for entity_ in head_entities:
ent_masked_tokens = []
ent_masked_tokens_align = []
last_preds = [id_of_non_entity for group in group_predictions]
last_ent_ids = [-1 for group in group_entity_ids]
for token_idx, token in enumerate(sample.tokens):
for group, ent_ids, last_pred, last_ent_id in zip(group_predictions, group_entity_ids, last_preds, last_ent_ids):
pred = group[sample_idx][token_idx]
ent_id = ent_ids[sample_idx][token_idx]
if last_pred != pred and last_pred != id_of_non_entity:
mask = "[/SUB]" if last_ent_id == entity_.id else "[/OBJ]"
ent_masked_tokens.extend([f"[/ENT-{last_pred:02d}]", mask])
ent_masked_tokens_align.extend([str(last_ent_id), str(last_ent_id)])
for group, ent_ids, last_pred, last_ent_id in zip(group_predictions, group_entity_ids, last_preds, last_ent_ids):
pred = group[sample_idx][token_idx]
ent_id = ent_ids[sample_idx][token_idx]
if last_pred != pred and pred != id_of_non_entity:
mask = "[SUB]" if ent_id == entity_.id else "[OBJ]"
ent_masked_tokens.extend([mask, f"[ENT-{pred:02d}]"])
ent_masked_tokens_align.extend([str(ent_id), str(ent_id)])
ent_masked_tokens.append(token.text)
ent_masked_tokens_align.append(token.text)
for idx, group in enumerate(group_predictions):
last_preds[idx] = group[sample_idx][token_idx]
for idx, group in enumerate(group_entity_ids):
last_ent_ids[idx] = group[sample_idx][token_idx]
for group, ent_ids, last_pred, last_ent_id in zip(group_predictions, group_entity_ids, last_preds, last_ent_ids):
pred = group[sample_idx][token_idx]
ent_id = ent_ids[sample_idx][token_idx]
if last_pred != id_of_non_entity:
mask = "[/SUB]" if last_ent_id == entity_.id else "[/OBJ]"
ent_masked_tokens.extend([f"[/ENT-{last_pred:02d}]", mask])
ent_masked_tokens_align.extend([str(last_ent_id), str(last_ent_id)])
masked_tokens.append(ent_masked_tokens)
masked_tokens_align.append(ent_masked_tokens_align)
rel_predictions = self.__get_predictions(masked_tokens, "[REL]")
self.generate_response_relations(sample, head_entities, masked_tokens_align, rel_predictions)
def generate_response_entities(self, sample: Sample, predictions_per_tokens: List[int], grp_idx: int):
entities = []
entity_ids = []
id_of_non_entity = self.__entity_type_set.id_of_non_entity
idx = grp_idx * 1000
for token, prediction in zip(sample.tokens, predictions_per_tokens):
if id_of_non_entity == prediction:
entity_ids.append(-1)
continue
idx += 1
entities.append(self.__build_entity(idx, prediction, token))
entity_ids.append(idx)
if self.__merge_entities:
entities = self.__do_merge_entities(copy.deepcopy(entities))
prev_pred = id_of_non_entity
for idx, pred in enumerate(predictions_per_tokens):
if prev_pred == pred and idx > 0:
entity_ids[idx] = entity_ids[idx-1]
prev_pred = pred
sample.entities += entities
tags = sample.tags if len(sample.tags) > 0 else [self.__entity_type_set.id_of_non_entity] * len(sample.tokens)
for tag_id, tok in enumerate(sample.tokens):
for ent in entities:
if tok.start >= ent.start and tok.start < ent.end:
tags[tag_id] = ent.ent_type.idx
logging.info(tags)
sample.tags = tags
return entity_ids
def generate_response_relations(self, sample: Sample, head_entities: List[Entity], masked_tokens_align: List[List[str]], rel_predictions: List[List[int]]):
relations = []
id_of_non_entity = self.__entity_type_set.id_of_non_entity
idx = 0
for entity_, align_per_ent, prediction_per_ent in zip(head_entities, masked_tokens_align, rel_predictions):
for token, prediction in zip(align_per_ent, prediction_per_ent):
if id_of_non_entity == prediction:
continue
try:
tail = int(token)
except:
continue
if not self.__validate_relation(sample.entities, entity_.id, tail, prediction):
continue
idx += 1
relations.append(self.__build_relation(idx, entity_.id, tail, prediction))
sample.relations = relations
def __validate_relation(self, entities: List[Entity], head: int, tail: int, prediction: int):
if head == tail: return False
head_ents = [ent.ent_type.label for ent in entities if ent.id==head]
tail_ents = [ent.ent_type.label for ent in entities if ent.id==tail]
if len(head_ents) > 0:
head_ent = head_ents[0]
else:
return False
if len(tail_ents) > 0:
tail_ent = tail_ents[0]
else:
return False
return tail_ent in valid_relations[head_ent]
def __build_entity(self, idx: int, prediction: int, token: Token) -> Entity:
return Entity(
id=idx,
text=token.text,
start=token.start,
end=token.end,
ent_type=EntityType(
idx=prediction,
label=self.__entity_type_id_to_label_mapping[prediction]
)
)
def __build_relation(self, idx: int, head: int, tail: int, prediction: int) -> Relation:
return Relation(
id=idx,
head=head,
tail=tail,
rel_type=EntityType(
idx=prediction,
label=self.__entity_type_id_to_label_mapping[prediction]
)
)
def __do_merge_entities(self, input_ents_):
out_ents = list()
current_ent = None
for ent in input_ents_:
if current_ent is None:
current_ent = ent
else:
idx_diff = ent.start - current_ent.end
if ent.ent_type.idx == current_ent.ent_type.idx and idx_diff <= 1:
current_ent.end = ent.end
current_ent.text += (" " if idx_diff == 1 else "") + ent.text
else:
out_ents.append(current_ent)
current_ent = ent
if current_ent is not None:
out_ents.append(current_ent)
return out_ents
def __get_predictions(self, token_lists: List[List[str]], trigger: str) -> List[List[int]]:
""" Get predictions of Transformer Sequence Labeling model """
if self.__split_len > 0:
token_lists_split = self.__do_split_sentences(token_lists, self.__split_len)
predictions = []
for sample_token_lists in token_lists_split:
sample_token_lists_trigger = [[trigger]+sample for sample in sample_token_lists]
val_encodings = self.__tokenizer(sample_token_lists_trigger, is_split_into_words=True, padding='max_length', truncation=True) # return_tensors="pt"
val_labels = []
for i in range(len(sample_token_lists_trigger)):
word_ids = val_encodings.word_ids(batch_index=i)
label_ids = [0 for _ in word_ids]
val_labels.append(label_ids)
val_dataset = TokenClassificationDataset(val_encodings, val_labels)
predictions_raw, _, _ = self.__trainer.predict(val_dataset)
predictions_align = self.__align_predictions(predictions_raw, val_encodings)
confidence = [[max(token) for token in sample] for sample in predictions_align]
predictions_sample = [[token.index(max(token)) for token in sample][1:] for sample in predictions_align]
predictions_part = []
for tok, pred in zip(sample_token_lists_trigger, predictions_sample):
if trigger == "[REL]" and "[SUB]" not in tok:
predictions_part += [self.__entity_type_set.id_of_non_entity] * len(pred)
else:
predictions_part += pred
predictions.append(predictions_part)
# predictions.append([j for i in predictions_sample for j in i]))
else:
token_lists_trigger = [[trigger]+sample for sample in token_lists]
val_encodings = self.__tokenizer(token_lists_trigger, is_split_into_words=True, padding='max_length', truncation=True) # return_tensors="pt"
val_labels = []
for i in range(len(token_lists_trigger)):
word_ids = val_encodings.word_ids(batch_index=i)
label_ids = [0 for _ in word_ids]
val_labels.append(label_ids)
val_dataset = TokenClassificationDataset(val_encodings, val_labels)
predictions_raw, _, _ = self.__trainer.predict(val_dataset)
predictions_align = self.__align_predictions(predictions_raw, val_encodings)
confidence = [[max(token) for token in sample] for sample in predictions_align]
predictions = [[token.index(max(token)) for token in sample][1:] for sample in predictions_align]
return predictions
def __do_split_sentences(self, tokens_: List[List[str]], split_len_ = 200) -> List[List[List[str]]]:
# split token lists into shorter lists
res_tokens = []
for tok_lst in tokens_:
res_tokens_sample = []
length = len(tok_lst)
if length > split_len_:
num_lists = length // split_len_ + (1 if (length % split_len_) > 0 else 0)
new_length = int(length / num_lists) + 1
self.__logger.info(f"Splitting a list of {length} elements into {num_lists} lists of length {new_length}..")
start_idx = 0
for i in range(num_lists):
end_idx = min(start_idx + new_length, length)
if "\n" in tok_lst[start_idx]: tok_lst[start_idx] = "."
if "\n" in tok_lst[end_idx-1]: tok_lst[end_idx-1] = "."
res_tokens_sample.append(tok_lst[start_idx:end_idx])
start_idx = end_idx
res_tokens.append(res_tokens_sample)
else:
res_tokens.append([tok_lst])
return res_tokens
def __align_predictions(self, predictions, tokenized_inputs, sum_all_tokens=False) -> List[List[List[float]]]:
""" Align predicted labels from Transformer Tokenizer """
confidence = []
id_of_non_entity = self.__entity_type_set.id_of_non_entity
for i, tagset in enumerate(predictions):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
token_confidence = []
for k, word_idx in enumerate(word_ids):
try:
tok_conf = [value for value in tagset[k]]
except TypeError:
# use the object itself it if's not iterable
tok_conf = tagset[k]
if word_idx is not None:
# add nonentity tokens if there is a gap in word ids (usually caused by a newline token)
if previous_word_idx is not None:
diff = word_idx - previous_word_idx
for i in range(diff - 1):
tmp = [0 for _ in tok_conf]
tmp[id_of_non_entity] = 1.0
token_confidence.append(tmp)
# add confidence value if this is the first token of the word
if word_idx != previous_word_idx:
token_confidence.append(tok_conf)
else:
# if sum_all_tokens=True the confidence for all tokens of one word will be summarized
if sum_all_tokens:
token_confidence[-1] = [a + b for a, b in zip(token_confidence[-1], tok_conf)]
previous_word_idx = word_idx
confidence.append(token_confidence)
return confidence
|