File size: 17,861 Bytes
a50f42c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import json
import logging
from typing import List, Any
import copy

import torch
from torch.utils.data import Dataset
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer

from util.process_data import Sample, Entity, EntityType, EntityTypeSet, SampleList, Token, Relation
from util.configuration import InferenceConfiguration

valid_relations = { # head : [tail, ...]
    "StatedKeyFigure": ["StatedKeyFigure", "Condition", "StatedExpression", "DeclarativeExpression"],
    "DeclarativeKeyFigure": ["DeclarativeKeyFigure", "Condition", "StatedExpression", "DeclarativeExpression"],
    "StatedExpression": ["Unit", "Factor", "Range", "Condition"],
    "DeclarativeExpression": ["DeclarativeExpression", "Unit", "Factor", "Range", "Condition"],
    "Condition": ["Condition", "StatedExpression", "DeclarativeExpression"],
    "Range": ["Range"]
}

class TokenClassificationDataset(Dataset):
    """ Pytorch Dataset """

    def __init__(self, encodings, labels):
        self.encodings = encodings
        self.labels = labels

    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
        item['labels'] = torch.tensor(self.labels[idx])
        return item

    def __len__(self):
        return len(self.labels)


class TransformersInference():

    def __init__(self, config: InferenceConfiguration):
        super().__init__()
        self.__logger = logging.getLogger(self.__class__.__name__)
        self.__logger.info(f"Load Configuration: {config.dict()}")

        with open(f"classification.json", mode='r', encoding="utf-8") as f:
            self.__entity_type_set = EntityTypeSet.parse_obj(json.load(f))
        self.__entity_type_label_to_id_mapping = {x.label: x.idx for x in self.__entity_type_set.all_types()}
        self.__entity_type_id_to_label_mapping = {x.idx: x.label for x in self.__entity_type_set.all_types()}

        self.__logger.info("Load Model: " + config.model_path_keyfigure)
        self.__tokenizer = AutoTokenizer.from_pretrained(config.transformer_model,
                padding="max_length", max_length=512, truncation=True) 
        
        self.__model = AutoModelForTokenClassification.from_pretrained(config.model_path_keyfigure, num_labels=(
            len(self.__entity_type_set)))

        self.__trainer = Trainer(model=self.__model)
        self.__merge_entities = config.merge_entities
        self.__split_len = config.split_len
        self.__extract_relations = config.extract_relations

        # add special tokens
        entity_groups = self.__entity_type_set.groups
        num_entity_groups = len(entity_groups)

        lst_special_tokens = ["[REL]", "[SUB]", "[/SUB]", "[OBJ]", "[/OBJ]"]
        for grp_idx, grp in enumerate(entity_groups):
            lst_special_tokens.append(f"[GRP-{grp_idx:02d}]")
            lst_special_tokens.extend([f"[ENT-{ent:02d}]" for ent in grp if ent != self.__entity_type_set.id_of_non_entity])
            lst_special_tokens.extend([f"[/ENT-{ent:02d}]" for ent in grp if ent != self.__entity_type_set.id_of_non_entity])

        lst_special_tokens = sorted(list(set(lst_special_tokens)))
        special_tokens_dict = {'additional_special_tokens': lst_special_tokens }
        num_added_toks = self.__tokenizer.add_special_tokens(special_tokens_dict)
        self.__logger.info(f"Added {num_added_toks} new special tokens. All special tokens: '{self.__tokenizer.all_special_tokens}'")

        self.__logger.info("Initialization completed.")



    def run_inference(self, sample_list: SampleList):
        group_predictions = []
        group_entity_ids = []
        self.__logger.info("Predict Entities ...")
        for grp_idx, grp in enumerate(self.__entity_type_set.groups):
            token_lists = [[x.text for x in sample.tokens] for sample in sample_list.samples]
            predictions = self.__get_predictions(token_lists, f"[GRP-{grp_idx:02d}]")
            group_entity_ids_ = []
            for sample, prediction_per_tokens in zip(sample_list.samples, predictions):
                group_entity_ids_.append(self.generate_response_entities(sample, prediction_per_tokens, grp_idx))
            group_predictions.append(predictions)
            group_entity_ids.append(group_entity_ids_)

        if self.__extract_relations:
            self.__logger.info("Predict Relations ...")
            self.__do_extract_relations(sample_list, group_predictions, group_entity_ids)


    def __do_extract_relations(self, sample_list, group_predictions, group_entity_ids):
        id_of_non_entity = self.__entity_type_set.id_of_non_entity

        for sample_idx, sample in enumerate(sample_list.samples):
            masked_tokens = []
            masked_tokens_align = []
            # create SUB-Mask for every entity that can be a head
            head_entities = [entity_ for entity_ in sample.entities if entity_.ent_type.label in list(valid_relations.keys())]
            for entity_ in head_entities:
                ent_masked_tokens = []
                ent_masked_tokens_align = []
                last_preds = [id_of_non_entity for group in group_predictions]
                last_ent_ids = [-1 for group in group_entity_ids]
                for token_idx, token in enumerate(sample.tokens):
                    for group, ent_ids, last_pred, last_ent_id in zip(group_predictions, group_entity_ids, last_preds, last_ent_ids):
                        pred = group[sample_idx][token_idx]
                        ent_id = ent_ids[sample_idx][token_idx]
                        if last_pred != pred and last_pred != id_of_non_entity:
                            mask = "[/SUB]" if last_ent_id == entity_.id else "[/OBJ]"
                            ent_masked_tokens.extend([f"[/ENT-{last_pred:02d}]", mask])
                            ent_masked_tokens_align.extend([str(last_ent_id), str(last_ent_id)])

                    for group, ent_ids, last_pred, last_ent_id in zip(group_predictions, group_entity_ids, last_preds, last_ent_ids):
                        pred = group[sample_idx][token_idx]
                        ent_id = ent_ids[sample_idx][token_idx]
                        if last_pred != pred and pred != id_of_non_entity:
                            mask = "[SUB]" if ent_id == entity_.id else "[OBJ]"
                            ent_masked_tokens.extend([mask, f"[ENT-{pred:02d}]"])
                            ent_masked_tokens_align.extend([str(ent_id), str(ent_id)])

                    ent_masked_tokens.append(token.text)
                    ent_masked_tokens_align.append(token.text)
                    for idx, group in enumerate(group_predictions):
                        last_preds[idx] = group[sample_idx][token_idx]
                    for idx, group in enumerate(group_entity_ids):
                        last_ent_ids[idx] = group[sample_idx][token_idx]

                for group, ent_ids, last_pred, last_ent_id in zip(group_predictions, group_entity_ids, last_preds, last_ent_ids):
                    pred = group[sample_idx][token_idx]
                    ent_id = ent_ids[sample_idx][token_idx]
                    if last_pred != id_of_non_entity:
                        mask = "[/SUB]" if last_ent_id == entity_.id else "[/OBJ]"
                        ent_masked_tokens.extend([f"[/ENT-{last_pred:02d}]", mask])
                        ent_masked_tokens_align.extend([str(last_ent_id), str(last_ent_id)])

                masked_tokens.append(ent_masked_tokens)
                masked_tokens_align.append(ent_masked_tokens_align)

            rel_predictions = self.__get_predictions(masked_tokens, "[REL]")
            self.generate_response_relations(sample, head_entities, masked_tokens_align, rel_predictions)


    def generate_response_entities(self, sample: Sample, predictions_per_tokens: List[int], grp_idx: int):
        entities = []
        entity_ids = []
        id_of_non_entity = self.__entity_type_set.id_of_non_entity
        idx = grp_idx * 1000
        for token, prediction in zip(sample.tokens, predictions_per_tokens):
            if id_of_non_entity == prediction:
                entity_ids.append(-1)
                continue
            idx += 1
            entities.append(self.__build_entity(idx, prediction, token))
            entity_ids.append(idx)

        if self.__merge_entities:
            entities = self.__do_merge_entities(copy.deepcopy(entities))
            prev_pred = id_of_non_entity
            for idx, pred in enumerate(predictions_per_tokens):
                if prev_pred == pred and idx > 0:
                    entity_ids[idx] = entity_ids[idx-1]
                prev_pred = pred

        sample.entities += entities
 
        tags = sample.tags if len(sample.tags) > 0 else [self.__entity_type_set.id_of_non_entity] * len(sample.tokens)
        for tag_id, tok in enumerate(sample.tokens):
            for ent in entities:
                if tok.start >= ent.start and tok.start < ent.end:
                    tags[tag_id] = ent.ent_type.idx
        logging.info(tags)
        sample.tags = tags

        return entity_ids


    def generate_response_relations(self, sample: Sample, head_entities: List[Entity], masked_tokens_align: List[List[str]], rel_predictions: List[List[int]]):
        relations = []
        id_of_non_entity = self.__entity_type_set.id_of_non_entity
        idx = 0
        for entity_, align_per_ent, prediction_per_ent in zip(head_entities, masked_tokens_align, rel_predictions):
            for token, prediction in zip(align_per_ent, prediction_per_ent):
                if id_of_non_entity == prediction:
                    continue
                try:
                    tail = int(token)
                except:
                    continue
                if not self.__validate_relation(sample.entities, entity_.id, tail, prediction):
                    continue
                idx += 1
                relations.append(self.__build_relation(idx, entity_.id, tail, prediction))

        sample.relations = relations


    def __validate_relation(self, entities: List[Entity], head: int, tail: int, prediction: int):
        if head == tail: return False
        head_ents = [ent.ent_type.label for ent in entities if ent.id==head]
        tail_ents = [ent.ent_type.label for ent in entities if ent.id==tail]

        if len(head_ents) > 0:
            head_ent = head_ents[0]
        else:
            return False

        if len(tail_ents) > 0:
            tail_ent = tail_ents[0]
        else:
            return False

        return tail_ent in valid_relations[head_ent]


    def __build_entity(self, idx: int, prediction: int, token: Token) -> Entity:
        return Entity(
            id=idx,
            text=token.text,
            start=token.start,
            end=token.end,
            ent_type=EntityType(
                idx=prediction, 
                label=self.__entity_type_id_to_label_mapping[prediction]
                )
        )

    def __build_relation(self, idx: int, head: int, tail: int, prediction: int) -> Relation:
        return Relation(
            id=idx,
            head=head,
            tail=tail,
            rel_type=EntityType(
                idx=prediction, 
                label=self.__entity_type_id_to_label_mapping[prediction]
                )
        )

    def __do_merge_entities(self, input_ents_):
        out_ents = list()
        current_ent = None

        for ent in input_ents_:
            if current_ent is None:
                current_ent = ent
            else:
                idx_diff = ent.start - current_ent.end
                if ent.ent_type.idx == current_ent.ent_type.idx and idx_diff <= 1:
                    current_ent.end = ent.end
                    current_ent.text += (" " if idx_diff == 1 else "") + ent.text
                else:
                    out_ents.append(current_ent)
                    current_ent = ent
        
        if current_ent is not None:
            out_ents.append(current_ent)

        return out_ents


    def __get_predictions(self, token_lists: List[List[str]], trigger: str) -> List[List[int]]:
        """ Get predictions of Transformer Sequence Labeling model """
        if self.__split_len > 0:
            token_lists_split = self.__do_split_sentences(token_lists, self.__split_len)
            predictions = []
            for sample_token_lists in token_lists_split:
                sample_token_lists_trigger = [[trigger]+sample for sample in sample_token_lists]
                val_encodings = self.__tokenizer(sample_token_lists_trigger, is_split_into_words=True, padding='max_length', truncation=True)  # return_tensors="pt"
                val_labels = []
                for i in range(len(sample_token_lists_trigger)):
                    word_ids = val_encodings.word_ids(batch_index=i)
                    label_ids = [0 for _ in word_ids]
                    val_labels.append(label_ids)

                val_dataset = TokenClassificationDataset(val_encodings, val_labels)

                predictions_raw, _, _ = self.__trainer.predict(val_dataset)

                predictions_align = self.__align_predictions(predictions_raw, val_encodings)
                confidence = [[max(token) for token in sample] for sample in predictions_align]
                predictions_sample = [[token.index(max(token)) for token in sample][1:] for sample in predictions_align]
                predictions_part = []
                for tok, pred in zip(sample_token_lists_trigger, predictions_sample):
                    if trigger == "[REL]" and "[SUB]" not in tok:
                        predictions_part += [self.__entity_type_set.id_of_non_entity] * len(pred)
                    else:
                        predictions_part += pred
                predictions.append(predictions_part)
                # predictions.append([j for i in predictions_sample for j in i]))
        else:
            token_lists_trigger = [[trigger]+sample for sample in token_lists]
            val_encodings = self.__tokenizer(token_lists_trigger, is_split_into_words=True, padding='max_length', truncation=True)  # return_tensors="pt"
            val_labels = []
            for i in range(len(token_lists_trigger)):
                word_ids = val_encodings.word_ids(batch_index=i)
                label_ids = [0 for _ in word_ids]
                val_labels.append(label_ids)

            val_dataset = TokenClassificationDataset(val_encodings, val_labels)

            predictions_raw, _, _ = self.__trainer.predict(val_dataset)

            predictions_align = self.__align_predictions(predictions_raw, val_encodings)
            confidence = [[max(token) for token in sample] for sample in predictions_align]
            predictions = [[token.index(max(token)) for token in sample][1:] for sample in predictions_align]

        return predictions

    def __do_split_sentences(self, tokens_: List[List[str]], split_len_ = 200) -> List[List[List[str]]]:
        # split token lists into shorter lists
        res_tokens = []

        for tok_lst in tokens_:
            res_tokens_sample = []
            length = len(tok_lst)
            if length > split_len_:
                num_lists = length // split_len_ + (1 if (length % split_len_) > 0 else 0)
                new_length = int(length / num_lists) + 1
                self.__logger.info(f"Splitting a list of {length} elements into {num_lists} lists of length {new_length}..")
                start_idx = 0
                for i in range(num_lists):
                    end_idx = min(start_idx + new_length, length)
                    if "\n" in tok_lst[start_idx]: tok_lst[start_idx] = "."
                    if "\n" in tok_lst[end_idx-1]: tok_lst[end_idx-1] = "."
                    res_tokens_sample.append(tok_lst[start_idx:end_idx])
                    start_idx = end_idx

                res_tokens.append(res_tokens_sample)
            else:
                res_tokens.append([tok_lst])

        return res_tokens
    

    def __align_predictions(self, predictions, tokenized_inputs, sum_all_tokens=False) -> List[List[List[float]]]:
        """ Align predicted labels from Transformer Tokenizer """
        confidence = []
        id_of_non_entity = self.__entity_type_set.id_of_non_entity
        for i, tagset in enumerate(predictions):

            word_ids = tokenized_inputs.word_ids(batch_index=i)

            previous_word_idx = None
            token_confidence = []
            for k, word_idx in enumerate(word_ids):
                try:
                    tok_conf = [value for value in tagset[k]]
                except TypeError:
                    # use the object itself it if's not iterable
                    tok_conf = tagset[k]

                if word_idx is not None:
                    # add nonentity tokens if there is a gap in word ids (usually caused by a newline token)
                    if previous_word_idx is not None:
                        diff = word_idx - previous_word_idx
                        for i in range(diff - 1):
                            tmp = [0 for _ in tok_conf]
                            tmp[id_of_non_entity] = 1.0
                            token_confidence.append(tmp)

                    # add confidence value if this is the first token of the word
                    if word_idx != previous_word_idx:
                        token_confidence.append(tok_conf)
                    else:
                        # if sum_all_tokens=True the confidence for all tokens of one word will be summarized
                        if sum_all_tokens:
                            token_confidence[-1] = [a + b for a, b in zip(token_confidence[-1], tok_conf)]

                previous_word_idx = word_idx

            confidence.append(token_confidence)

        return confidence