Spaces:
Runtime error
Runtime error
File size: 8,701 Bytes
3b909cb fe525fc 3b909cb fb4f2b9 3b909cb 7b0d035 7fd1595 494344f 7b0d035 5cb71e1 7b0d035 3b909cb 10907b9 fb4f2b9 397cc99 fb4f2b9 3ae9a61 3b909cb f7e9c78 3ae9a61 f7e9c78 5cb71e1 f7e9c78 3b909cb 3ae9a61 3b909cb 3ae9a61 10907b9 f3e03bc 10907b9 f3e03bc 10907b9 f3e03bc 10907b9 f3e03bc 10907b9 f3e03bc 10907b9 3ae9a61 10907b9 3ae9a61 10907b9 3ae9a61 10907b9 3ae9a61 10907b9 3ae9a61 10907b9 3ae9a61 10907b9 3ae9a61 10907b9 3ae9a61 10907b9 b002866 3ae9a61 10907b9 3ae9a61 10907b9 3b909cb 10907b9 3b909cb 3ae9a61 10907b9 3b909cb 494344f 3b909cb 8cdc393 3b909cb 535092b 03b810c eb456f3 03b810c eb456f3 03b810c 10907b9 3b909cb 10907b9 535092b b002866 81e4d97 4165a15 03b810c 5cb71e1 5701c9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import gradio as gr
import os.path
import numpy as np
from collections import OrderedDict
import torch
import cv2
from PIL import Image, ImageOps
import utils_image as util
from network_fbcnn import FBCNN as net
import requests
import datetime
for model_path in ['fbcnn_gray.pth','fbcnn_color.pth']:
if os.path.exists(model_path):
print(f'{model_path} exists.')
else:
print("downloading model")
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path))
r = requests.get(url, allow_redirects=True)
open(model_path, 'wb').write(r.content)
def inference(input_img, is_gray, input_quality, zoom, x_shift, y_shift):
print("datetime:",datetime.datetime.utcnow())
input_img_width, input_img_height = Image.fromarray(input_img).size
print("img size:",(input_img_width,input_img_height))
if (input_img_width > 1080) or (input_img_height > 1080):
resize_ratio = min(1080/input_img_width, 1080/input_img_height)
resized_input = Image.fromarray(input_img).resize((int(input_img_width*resize_ratio)+(input_img_width*resize_ratio < 1),
int(input_img_height*resize_ratio)+(input_img_height*resize_ratio < 1)),
resample=Image.BICUBIC)
input_img = np.array(resized_input)
print("input image resized to:", resized_input.size)
if is_gray:
n_channels = 1 # set 1 for grayscale image, set 3 for color image
model_name = 'fbcnn_gray.pth'
else:
n_channels = 3 # set 1 for grayscale image, set 3 for color image
model_name = 'fbcnn_color.pth'
nc = [64,128,256,512]
nb = 4
input_quality = 100 - input_quality
model_path = model_name
if os.path.exists(model_path):
print(f'{model_path} already exists.')
else:
print("downloading model")
os.makedirs(os.path.dirname(model_path), exist_ok=True)
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path))
r = requests.get(url, allow_redirects=True)
open(model_path, 'wb').write(r.content)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("device:",device)
# ----------------------------------------
# load model
# ----------------------------------------
print(f'loading model from {model_path}')
model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R')
print("#model.load_state_dict(torch.load(model_path), strict=True)")
model.load_state_dict(torch.load(model_path), strict=True)
print("#model.eval()")
model.eval()
print("#for k, v in model.named_parameters()")
for k, v in model.named_parameters():
v.requires_grad = False
print("#model.to(device)")
model = model.to(device)
print("Model loaded.")
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnrb'] = []
# ------------------------------------
# (1) img_L
# ------------------------------------
print("#if n_channels")
if n_channels == 1:
open_cv_image = Image.fromarray(input_img)
open_cv_image = ImageOps.grayscale(open_cv_image)
open_cv_image = np.array(open_cv_image) # PIL to open cv image
img = np.expand_dims(open_cv_image, axis=2) # HxWx1
elif n_channels == 3:
open_cv_image = np.array(input_img) # PIL to open cv image
if open_cv_image.ndim == 2:
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_GRAY2RGB) # GGG
else:
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB) # RGB
print("#util.uint2tensor4(open_cv_image)")
img_L = util.uint2tensor4(open_cv_image)
print("#img_L.to(device)")
img_L = img_L.to(device)
# ------------------------------------
# (2) img_E
# ------------------------------------
print("#model(img_L)")
img_E,QF = model(img_L)
print("#util.tensor2single(img_E)")
img_E = util.tensor2single(img_E)
print("#util.single2uint(img_E)")
img_E = util.single2uint(img_E)
print("#torch.tensor([[1-input_quality/100]]).cuda() || torch.tensor([[1-input_quality/100]])")
qf_input = torch.tensor([[1-input_quality/100]]).cuda() if device == torch.device('cuda') else torch.tensor([[1-input_quality/100]])
print("#util.single2uint(img_E)")
img_E,QF = model(img_L, qf_input)
print("#util.tensor2single(img_E)")
img_E = util.tensor2single(img_E)
print("#util.single2uint(img_E)")
img_E = util.single2uint(img_E)
if img_E.ndim == 3:
img_E = img_E[:, :, [2, 1, 0]]
print("--inference finished")
out_img = Image.fromarray(img_E)
out_img_w, out_img_h = out_img.size # output image size
zoom = zoom/100
x_shift = x_shift/100
y_shift = y_shift/100
zoom_w, zoom_h = out_img_w*zoom, out_img_h*zoom
zoom_left, zoom_right = int((out_img_w - zoom_w)*x_shift), int(zoom_w + (out_img_w - zoom_w)*x_shift)
zoom_top, zoom_bottom = int((out_img_h - zoom_h)*y_shift), int(zoom_h + (out_img_h - zoom_h)*y_shift)
in_img = Image.fromarray(input_img)
in_img = in_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom))
in_img = in_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST)
out_img = out_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom))
out_img = out_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST)
print("--generating preview finished")
return img_E, in_img, out_img
gr.Interface(
fn = inference,
inputs = [gr.inputs.Image(label="Input Image"),
gr.inputs.Checkbox(label="Grayscale (Check this if your image is grayscale)"),
gr.inputs.Slider(minimum=1, maximum=100, step=1, label="Intensity (Higher = stronger JPEG artifact removal)"),
gr.inputs.Slider(minimum=10, maximum=100, step=1, default=50, label="Zoom Image "
"(Use this to see a copy of the output image up close. "
"100 = original size)"),
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom horizontal shift "
"(Increase to shift to the right)"),
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom vertical shift "
"(Increase to shift downwards)")
],
outputs = [gr.outputs.Image(label="Result"),
gr.outputs.Image(label="Before:"),
gr.outputs.Image(label="After:")],
examples = [["doraemon.jpg",False,60,42,50,50],
["tomandjerry.jpg",False,60,40,57,44],
["somepanda.jpg",True,100,30,8,24],
["cemetry.jpg",False,70,20,76,62],
["michelangelo_david.jpg",True,30,12,53,27],
["elon_musk.jpg",False,45,15,33,30],
["text.jpg",True,70,50,11,29]],
title = "JPEG Artifacts Removal [FBCNN]",
description = "Gradio Demo for JPEG Artifacts Removal. To use it, simply upload your image, "
"or click one of the examples to load them. Check out the paper and the original GitHub repo at the links below. "
"JPEG artifacts are noticeable distortions of images caused by JPEG lossy compression. "
"This is not a super-resolution AI but a JPEG compression artifact remover. "
"Written below the examples are the limitations of the input image. ",
article = "<p style='text-align: left;'>Uploaded images with a length longer than 1080 pixels will be downscaled to a smaller size "
"with a length of 1080 pixels. Uploaded images with transparency will be incorrectly reconstructed at the output.</p>"
"<p style='text-align: center;'><a href='https://github.com/jiaxi-jiang/FBCNN'>FBCNN GitHub Repo</a><br>"
"<a href='https://arxiv.org/abs/2109.14573'>Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)</a><br>"
"<a href='https://jiaxi-jiang.github.io/'>Jiaxi Jiang, </a>"
"<a href='https://cszn.github.io/'>Kai Zhang, </a>"
"<a href='http://people.ee.ethz.ch/~timofter/'>Radu Timofte</a></p>",
allow_flagging="never"
).launch(enable_queue=True) |