Spaces:
Runtime error
Runtime error
File size: 6,868 Bytes
3b909cb fe525fc 3b909cb 7b0d035 7fd1595 7b0d035 a91c837 7b0d035 3b909cb 535092b 3b909cb 535092b eb456f3 535092b eb456f3 535092b eb456f3 535092b eb456f3 3b909cb eb456f3 535092b ecdf0e1 5701c9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import gradio as gr
import os.path
import numpy as np
from collections import OrderedDict
import torch
import cv2
from PIL import Image, ImageOps
import utils_image as util
from network_fbcnn import FBCNN as net
import requests
for model_path in ['fbcnn_gray.pth','fbcnn_color.pth']:
if os.path.exists(model_path):
print(f'loading model from {model_path}')
else:
#os.makedirs(os.path.dirname(model_path), exist_ok=True)
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path))
r = requests.get(url, allow_redirects=True)
open(model_path, 'wb').write(r.content)
def inference(input_img, is_gray, input_quality, enable_zoom, zoom, x_shift, y_shift, state):
if is_gray:
n_channels = 1 # set 1 for grayscale image, set 3 for color image
model_name = 'fbcnn_gray.pth'
else:
n_channels = 3 # set 1 for grayscale image, set 3 for color image
model_name = 'fbcnn_color.pth'
nc = [64,128,256,512]
nb = 4
input_quality = 100 - input_quality
model_path = model_name
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# ----------------------------------------
# load model
# ----------------------------------------
if (not enable_zoom) or (state[1] is None):
model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R')
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnrb'] = []
# ------------------------------------
# (1) img_L
# ------------------------------------
if n_channels == 1:
open_cv_image = Image.fromarray(input_img)
open_cv_image = ImageOps.grayscale(open_cv_image)
open_cv_image = np.array(open_cv_image) # PIL to open cv image
img = np.expand_dims(open_cv_image, axis=2) # HxWx1
elif n_channels == 3:
open_cv_image = np.array(input_img) # PIL to open cv image
if open_cv_image.ndim == 2:
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_GRAY2RGB) # GGG
else:
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB) # RGB
img_L = util.uint2tensor4(open_cv_image)
img_L = img_L.to(device)
# ------------------------------------
# (2) img_E
# ------------------------------------
img_E,QF = model(img_L)
QF = 1- QF
img_E = util.tensor2single(img_E)
img_E = util.single2uint(img_E)
qf_input = torch.tensor([[1-input_quality/100]]).cuda() if device == torch.device('cuda') else torch.tensor([[1-input_quality/100]])
img_E,QF = model(img_L, qf_input)
QF = 1- QF
img_E = util.tensor2single(img_E)
img_E = util.single2uint(img_E)
if img_E.ndim == 3:
img_E = img_E[:, :, [2, 1, 0]]
if (state[1] is not None) and enable_zoom:
img_E = state[1]
out_img = Image.fromarray(img_E)
out_img_w, out_img_h = out_img.size # output image size
zoom = zoom/100
x_shift = x_shift/100
y_shift = y_shift/100
zoom_w, zoom_h = out_img_w*zoom, out_img_h*zoom
zoom_left, zoom_right = int((out_img_w - zoom_w)*x_shift), int(zoom_w + (out_img_w - zoom_w)*x_shift)
zoom_top, zoom_bottom = int((out_img_h - zoom_h)*y_shift), int(zoom_h + (out_img_h - zoom_h)*y_shift)
if (state[0] is None) or not enable_zoom:
in_img = Image.fromarray(input_img)
state[0] = input_img
else:
in_img = Image.fromarray(state[0])
in_img = in_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom))
in_img = in_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST)
out_img = out_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom))
out_img = out_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST)
return img_E, in_img, out_img, [state[0],img_E]
interface = gr.Interface(
fn = inference,
inputs = [gr.inputs.Image(),
gr.inputs.Checkbox(label="Grayscale (Check this if your image is grayscale)"),
gr.inputs.Slider(minimum=1, maximum=100, step=1, label="Intensity (Higher = stronger JPEG artifact removal)"),
gr.inputs.Checkbox(default=False, label="Edit Zoom preview (This is optional. "
"Check this after the image result is loaded to edit zoom parameters"
"without processing the input image.)"),
gr.inputs.Slider(minimum=10, maximum=100, step=1, default=50, label="Zoom Image "
"(Use this to see the image quality up close. "
"100 = original size)"),
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom preview horizontal shift "
"(Increase to shift to the right)"),
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom preview vertical shift "
"(Increase to shift downwards)"),
gr.inputs.State(default=[None,None])
],
outputs = [gr.outputs.Image(label="Result"),
gr.outputs.Image(label="Before:"),
gr.outputs.Image(label="After:"),
"state"],
examples = [["doraemon.jpg",False,60,False,42,50,50],
["tomandjerry.jpg",False,60,False,40,57,44],
["somepanda.jpg",True,100,False,30,8,24],
["cemetry.jpg",False,70,False,20,44,77],
["michelangelo_david.jpg",True,30,False,12,53,27],
["elon_musk.jpg",False,45,False,15,33,30]],
title = "JPEG Artifacts Removal [FBCNN]",
description = "Gradio Demo for JPEG Artifacts Removal. To use it, simply upload your image, "
"or click one of the examples to load them. Checkout the original GitHub at the link below. "
"JPEG artifacts are noticeable distortion of images caused by JPEG lossy compression. "
"This is not a super resolution AI but a JPEG compression artifact remover.",
article = "<p style='text-align: center'><a href='https://github.com/jiaxi-jiang/FBCNN' target='_blank'>FBCNN Github Repo</a></p>",
allow_flagging="never"
).launch(enable_queue=True) |