File size: 12,053 Bytes
d94c92e
 
 
 
 
 
 
 
 
 
 
 
 
475081a
d94c92e
3f5c862
d94c92e
 
3f5c862
 
 
d94c92e
 
 
475081a
 
 
 
 
 
 
 
 
 
 
d94c92e
 
 
475081a
889c3a5
51d386c
 
 
d94c92e
 
 
475081a
 
d94c92e
475081a
 
 
d94c92e
475081a
 
 
 
d94c92e
475081a
d94c92e
78950cf
51d386c
d94c92e
475081a
51d386c
 
 
 
475081a
d94c92e
 
 
81b299b
 
 
 
 
 
d94c92e
 
 
00e1647
475081a
d94c92e
 
 
 
 
 
 
 
 
f584d87
 
17b677f
 
693597c
 
 
17b677f
 
f584d87
 
475081a
d94c92e
475081a
d94c92e
f584d87
d94c92e
 
2053ce2
3f5c862
087d986
 
3f5c862
 
 
 
 
087d986
3f5c862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
087d986
 
 
 
 
 
3f5c862
 
 
e4caed1
3f5c862
 
 
 
 
e4caed1
3f5c862
 
e4caed1
3f5c862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053ce2
3f5c862
 
087d986
3f5c862
 
 
 
 
087d986
3f5c862
e4caed1
3f5c862
 
 
 
e4caed1
 
3f5c862
087d986
 
e4caed1
 
3f5c862
087d986
 
e4caed1
 
087d986
e4caed1
 
087d986
e4caed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f5c862
 
 
2053ce2
3f5c862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d94c92e
475081a
81b299b
57da4b3
3f5c862
a7ce47d
 
d94c92e
 
475081a
5b469a4
 
 
 
 
f584d87
 
 
 
81b299b
57da4b3
3f5c862
17ea6af
4c644ed
3f5c862
3894697
8e5d27b
f584d87
 
d94c92e
 
f584d87
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ISCO-08 Hierarchical Accuracy Measure."""

from typing import List, Set, Dict, Tuple
import evaluate
import datasets

# import ham
# import isco


# TODO: Add BibTeX citation
_CITATION = """
@article{scikit-learn,
  title={Scikit-learn: Machine Learning in {P}ython},
  author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
         and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
         and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
         Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
  journal={Journal of Machine Learning Research},
  volume={12},
  pages={2825--2830},
  year={2011}
}
"""

_DESCRIPTION = """
The ISCO-08 Hierarchical Accuracy Measure is an implementation of the measure described in [Functional Annotation of Genes Using Hierarchical Text Categorization](https://www.researchgate.net/publication/44046343_Functional_Annotation_of_Genes_Using_Hierarchical_Text_Categorization) (Kiritchenko, Svetlana and Famili, Fazel. 2005) and adapted for the ISCO-08 classification scheme by the International Labour Organization.

The measure rewards more precise classifications that correctly identify an occupation's placement down to the specific Unit group level and applies penalties for misclassifications based on the hierarchical distance between the correct and assigned categories.

"""

_KWARGS_DESCRIPTION = """
Calculates hierarchical precision, hierarchical recall and hierarchical F1 given a list of reference codes and predicted codes from the ISCO-08 taxonomy by the International Labour Organization.

Args:
    - references (List[str]): List of ISCO-08 reference codes. Each reference code should be a single token, 4-digit ISCO-08 code string.
    - predictions (List[str]): List of machine predicted or human assigned ISCO-08 codes to score. Each prediction should be a single token, 4-digit ISCO-08 code string.

Returns:
    - hierarchical_precision (`float` or `int`): Hierarchical precision score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy.
    - hierarchical_recall: Hierarchical recall score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy.
    - hierarchical_fmeasure: Hierarchical F1 score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy.

Examples:
    Example 1

    >>> ham = evaluate.load("danieldux/isco_hierarchical_accuracy")
    >>> results = ham.compute(reference=["1111", "1112", "1113", "1114", "1120"], predictions=["1111", "1113", "1120", "1211", "2111"])
    >>> print(results)
    {
        "accuracy": 0.2,
        "hierarchical_precision": 0.5,
        "hierarchical_recall": 0.7777777777777778,
        "hierarchical_fmeasure": 0.6086956521739131,
    }
"""

# TODO: Define external resources urls if needed
ISCO_CSV_MIRROR_URL = (
    "https://storage.googleapis.com/isco-public/tables/ISCO_structure.csv"
)
ILO_ISCO_CSV_URL = (
    "https://www.ilo.org/ilostat-files/ISCO/newdocs-08-2021/ISCO-08/ISCO-08%20EN.csv"
)


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ISCO_Hierarchical_Accuracy(evaluate.Metric):
    """The ISCO-08 Hierarchical Accuracy Measure"""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "references": datasets.Sequence(datasets.Value("string")),
                    "predictions": datasets.Sequence(datasets.Value("string")),
                }
                if self.config_name == "multilabel"
                else {
                    "references": datasets.Value("string"),
                    "predictions": datasets.Value("string"),
                }
            ),
            # TODO: Homepage of the module for documentation
            homepage="http://module.homepage",
            # TODO: Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"],
        )

    def create_hierarchy_dict(self, file: str) -> dict:
        """
        Creates a dictionary where keys are nodes and values are dictionaries of their parent nodes with distance as weights,
        representing the group level hierarchy of the ISCO-08 structure.

        Args:
        - file: A string representing the path to the CSV file containing the 4-digit ISCO-08 codes. It can be a local path or a web URL.

        Returns:
        - A dictionary where keys are ISCO-08 unit codes and values are dictionaries of their parent codes with distances.
        """

        try:
            import requests
            import csv
        except ImportError as error:
            raise error

        isco_hierarchy = {}

        if file.startswith("http://") or file.startswith("https://"):
            response = requests.get(file)
            lines = response.text.splitlines()
        else:
            with open(file, newline="") as csvfile:
                lines = csvfile.readlines()

        reader = csv.DictReader(lines)
        for row in reader:
            unit_code = row["unit"].zfill(4)
            minor_code = unit_code[0:3]
            sub_major_code = unit_code[0:2]
            major_code = unit_code[0]

            # Assign weights, higher for closer ancestors
            weights = {minor_code: 0.75, sub_major_code: 0.5, major_code: 0.25}

            # Store ancestors with their weights
            isco_hierarchy[unit_code] = weights

        return isco_hierarchy

    def find_ancestors(self, node: str, hierarchy: Dict[str, Set[str]]) -> Set[str]:
        """
        Find the ancestors of a given node in a hierarchy.

        Args:
            node (str): The node for which to find ancestors.
            hierarchy (Dict[str, Set[str]]): A dictionary representing the hierarchy, where the keys are nodes and the values are their parents.

        Returns:
            Set[str]: A set of ancestors of the given node.
        """
        ancestors = set()
        nodes_to_visit = [node]
        while nodes_to_visit:
            current_node = nodes_to_visit.pop()
            if current_node in hierarchy:
                parents = hierarchy[current_node]
                ancestors.update(parents)
                nodes_to_visit.extend(parents)
        return ancestors

    def extend_with_ancestors(self, classes: set, hierarchy: dict) -> set:
        """
        Extend the given set of classes with their ancestors from the hierarchy.

        Args:
            classes (set): The set of classes to extend.
            hierarchy (dict): The hierarchy of classes.

        Returns:
            set: The extended set of classes including their ancestors.
        """
        extended_classes = set(classes)
        for cls in classes:
            ancestors = self.find_ancestors(cls, hierarchy)
            extended_classes.update(ancestors)
        return extended_classes

    def calculate_hierarchical_precision_recall(
        self,
        reference_codes: List[str],
        predicted_codes: List[str],
        hierarchy: Dict[str, Dict[str, float]],
    ) -> Tuple[float, float]:
        """
        Calculates the hierarchical precision and recall given the reference codes, predicted codes, and hierarchy definition.

        Args:
            reference_codes (List[str]): The list of reference codes.
            predicted_codes (List[str]): The list of predicted codes.
            hierarchy (Dict[str, Dict[str, float]]): The hierarchy definition where keys are nodes and values are dictionaries of parent nodes with distances.

        Returns:
            Tuple[float, float]: A tuple containing the hierarchical precision and recall floating point values.
        """
        extended_real = set()
        extended_predicted = set()

        # Extend the sets of reference codes with their ancestors
        for code in reference_codes:
            extended_real.add(code)
            extended_real.update(self.find_ancestors(code, hierarchy))

        # Extend the sets of predicted codes with their ancestors
        for code in predicted_codes:
            extended_predicted.add(code)
            extended_predicted.update(self.find_ancestors(code, hierarchy))

        # Calculate the intersection for recall
        correct_recall = extended_real.intersection(extended_predicted)

        # Calculate the intersection for precision
        correct_precision = set()
        for code in predicted_codes:
            if code in extended_real:
                correct_precision.add(code)
            correct_precision.update(
                self.find_ancestors(code, hierarchy).intersection(extended_real)
            )

        # Calculate hierarchical precision and recall using the size of intersections
        hP = (
            len(correct_precision) / len(extended_predicted)
            if extended_predicted
            else 0
        )
        hR = len(correct_recall) / len(extended_real) if extended_real else 0

        return hP, hR

    def hierarchical_f_measure(self, hP, hR, beta=1.0):
        """
        Calculate the hierarchical F-measure.

        Parameters:
        hP (float): The hierarchical precision.
        hR (float): The hierarchical recall.
        beta (float, optional): The beta value for F-measure calculation. Default is 1.0.

        Returns:
        float: The hierarchical F-measure.
        """
        if hP + hR == 0:
            return 0
        return (beta**2 + 1) * hP * hR / (beta**2 * hP + hR)

    def _download_and_prepare(self, dl_manager):
        """Download external ISCO-08 csv file from the ILO website for creating the hierarchy dictionary."""
        isco_csv = dl_manager.download_and_extract(ISCO_CSV_MIRROR_URL)
        print(f"ISCO CSV file downloaded")
        self.isco_hierarchy = self.create_hierarchy_dict(isco_csv)
        print("Weighted ISCO hierarchy dictionary created as isco_hierarchy")
        # print(self.isco_hierarchy)

    def _compute(self, predictions, references):
        """Returns the accuracy scores."""
        # Convert the inputs to strings
        predictions = [str(p) for p in predictions]
        references = [str(r) for r in references]

        # Calculate accuracy
        accuracy = sum(i == j for i, j in zip(predictions, references)) / len(
            predictions
        )

        # Calculate hierarchical precision, recall and f-measure
        hierarchy = self.isco_hierarchy
        hP, hR = self.calculate_hierarchical_precision_recall(
            references, predictions, hierarchy
        )
        hF = self.hierarchical_f_measure(hP, hR)
        print(
            f"Accuracy: {accuracy}, Hierarchical Precision: {hP}, Hierarchical Recall: {hR}, Hierarchical F-measure: {hF}"
        )

        return {
            "accuracy": accuracy,
            "hierarchical_precision": hP,
            "hierarchical_recall": hR,
            "hierarchical_fmeasure": hF,
        }