Spaces:
Runtime error
Runtime error
File size: 8,748 Bytes
7df83cd 50693de 52c66f2 86f1d14 2e61138 86f1d14 52c66f2 af02a05 6e44813 52c66f2 6e44813 52c66f2 6e44813 52c66f2 6e44813 52c66f2 0bad17c 8383642 0bad17c 1cbb4c0 0bad17c 1cbb4c0 0bad17c 8383642 1cbb4c0 52c66f2 f6ae243 52c66f2 f6ae243 6e44813 52c66f2 6e44813 52c66f2 e6560fa 8383642 e6560fa 8383642 e6560fa 52c66f2 e6560fa 8383642 52c66f2 e6560fa 52c66f2 e6560fa 52c66f2 8383642 52c66f2 9558ac4 52c66f2 6c3cc5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import gradio as gr
from tempfile import TemporaryDirectory, NamedTemporaryFile
from pdf2image import convert_from_path
from PIL import Image
import os
from io import BytesIO
import base64
import requests
import pandas as pd
import json
import logging
import re
os.system("apt-get update")
os.system("apt-get install poppler-utils")
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Function to convert PDF to images or open a single image
def get_images(file_path):
images = []
extension = os.path.splitext(file_path)[-1].lower()
if extension == ".pdf":
images = convert_from_path(file_path)
elif extension in [".tiff", ".tif", ".png", ".jpg", ".jpeg"]:
image = Image.open(file_path)
images.append(image)
return images
# Function to encode image to base64
def encode_image_to_base64(image):
# Ensure the image is in a format compatible with JPEG
if image.mode in ["P", "RGBA"]:
image = image.convert("RGB")
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def process_files_fixed(image_path, page_identifier, error_pages):
api_key = os.getenv('OPENAI_API_KEY')
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
try:
image = Image.open(image_path)
base64_image = encode_image_to_base64(image)
except Exception as e:
logging.error(f"Failed to process image at {image_path}: {e}")
error_pages.append(page_identifier)
return []
prompt = """**Objective:** Extract specific data from a table within an image using OCR.
**Image Description:** The image contains a table with student information.
**Columns of Interest:**
* S.No (Serial Number)
* Admission No.
* Date of Admission
* Name of Student
* Father's Name
* Date of Birth
* Telephone No.
* Address
* F.CNIC (Father's CNIC)
* S.CNIC (Student's CNIC) - Located under the "REMARKS" column
* M.Name (Mother's Name) - Located under the "REMARKS" column
**Instructions:**
1. **Perform OCR:** Use Optical Character Recognition to extract text from the image.
2. **Table Detection:** Identify the table within the image.
3. **Column Identification:**
* If table headers are present and visible, use them to identify the columns of interest.
* If headers are missing or unclear, assume the order of columns as specified above.
4. **Data Extraction:**
* Extract data from each row of the table for the specified columns only.
* Disregard any additional columns present in the table.
* **Important:** Extract data from all rows, do not skip any rows.
* For "Telephone No.", focus on the number itself and ignore any labels like "office" or "residence" associated with it.
* For "F.CNIC", "S.CNIC", and "M.Name", extract this information from the "REMARKS" column.
5. **Data Verification:**
* Implement checks to ensure the accuracy of extracted data, especially for numerical values like "S.No" and "Telephone No."
* Consider using checksums or validation rules based on known formats (e.g., CNIC format).
**Output Format:**
```json
{
"data": [
{
"S_No": "1",
"Admission No.": "1604",
"Date of Admission": "25-4-17",
"Name of Student": "Maham Tariq",
"Father's Name": "Tariq Mehman",
"Date of Birth": "12-05-12",
"Telephone No.": "03125350838",
"Address": "Dewan-e-umar Masjid F1014",
"F.CNIC": "61101-9729652-7",
"S.CNIC": "61101-8018797-4",
"M.Name": "Nasira"
},
{
"S_No": "2",
"Admission No.": "1640",
"Date of Admission": "05-10-20",
"Name of Student": "Areej Jibran",
"Father's Name": "M.Jibran",
"Date of Birth": "05-04-14",
"Telephone No.": "03335173534",
"Address": "H#65 st#11 G11/I isb",
"F. CNIC": "37405-0393951-3",
"S.CNIC": "37405-5642572-3",
"M.Name": "Taqdees Jibran"
}
]
}
"""
payload = {
"model": "gpt-4-vision-preview",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{base64_image}"
}
]
}
],
"max_tokens": 4096
}
try:
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
logging.info(f"Full API response: {response.text}")
if response.status_code == 200:
json_response = response.json()
response_content = json_response["choices"][0]["message"]["content"]
if response_content:
try:
json_string = response_content[response_content.find("{"): response_content.rfind("}") + 1]
json_data = json.loads(json_string)
if "data" in json_data and json_data["data"]:
return json_data["data"]
else:
logging.error(f"No records found in page/file: {page_identifier}")
error_pages.append(page_identifier)
return []
except json.JSONDecodeError:
logging.error(f"JSON parsing error in response for page/file {page_identifier}")
error_pages.append(page_identifier)
return []
else:
logging.error(f"No content in JSON response for page/file {page_identifier}")
error_pages.append(page_identifier)
return []
else:
logging.error(f"Error in API call for page/file {page_identifier}: HTTP {response.status_code} - {response.text}")
error_pages.append(page_identifier)
return []
except requests.exceptions.RequestException as e:
logging.error(f"Network or API error when processing page/file {page_identifier}: {e}")
error_pages.append(page_identifier)
return []
def process_pdf_and_generate_csv(file_path):
error_pages = [] # Initialize the list to track error pages or files
images = get_images(file_path)
structured_data = []
for i, image in enumerate(images, start=1):
with TemporaryDirectory() as temp_dir:
image_path = os.path.join(temp_dir, "image.jpg")
image.save(image_path)
data = process_files_fixed(image_path, i, error_pages)
structured_data.extend(data or [])
if structured_data:
df = pd.DataFrame(structured_data)
# Save to a temporary file to return through Gradio
tmp_file = NamedTemporaryFile(delete=False, suffix='.csv')
df.to_csv(tmp_file.name, index=False)
return tmp_file.name, f"Errors or no records found in {len(error_pages)} pages/files: {error_pages}"
else:
return None, "No data to save or an error occurred."
def gradio_interface(pdf_file):
result_csv, message = process_pdf_and_generate_csv(pdf_file.name)
if result_csv:
return result_csv, message
else:
return None, message
iface = gr.Interface(fn=gradio_interface,
inputs=gr.File(label="Please upload your PDF file"),
outputs=[gr.File(label="Download the generated CSV file"), gr.Textbox(label="Messages")],
title="PDF to CSV Table Extractor",
description="Upload a PDF file to extract tables into a CSV format.")
iface.queue().launch(share=False)
# |