Spaces:
Sleeping
Sleeping
File size: 12,761 Bytes
9de653a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import streamlit as st
import cv2
import torch
import numpy as np
import time
import tempfile
from pathlib import Path
# Import detection utilities
from detection_utils import load_model, detect_objects, draw_boxes, ObjectTracker
def initialize_video_capture(input_source, video_file=None, url=None):
"""Initialize video capture and writer"""
cap = None
out = None
output_path = None
if input_source == "Video File" and video_file is not None:
# Save uploaded file to temp location
tfile = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
tfile.write(video_file.read())
tfile.flush()
video_path = tfile.name
# Open video capture
cap = cv2.VideoCapture(video_path)
if cap.isOpened():
# Get video properties
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
# Ensure valid FPS
if fps <= 0:
fps = 30
# Create output path in a temporary directory
temp_dir = tempfile.gettempdir()
output_path = str(Path(temp_dir) / 'detected_output.mp4')
# Try different codecs in order of preference
codecs = [
('avc1', '.mp4'),
('mp4v', '.mp4'),
('XVID', '.avi')
]
for codec, ext in codecs:
try:
output_path = str(Path(temp_dir) / f'detected_output{ext}')
fourcc = cv2.VideoWriter_fourcc(*codec)
out = cv2.VideoWriter(
output_path,
fourcc,
fps,
(width, height),
isColor=True
)
# Test if writer is working
if out.isOpened():
break
except Exception:
continue
if out is None or not out.isOpened():
st.error("Failed to create video writer")
return None, None, None
elif input_source == "Live Stream URL" and url:
cap = cv2.VideoCapture(url)
return cap, out, output_path
def get_model_info():
"""Return information about available YOLO models"""
return {
'yolov8n.pt': {
'name': 'YOLOv8 Nano',
'description': 'Smallest and fastest model. Best for CPU or low-power devices.',
'speed': '⚡⚡⚡⚡⚡',
'accuracy': '⭐⭐',
'size': '6.7 MB',
'details': 'Ideal for real-time applications with limited computing power.'
},
'yolov8s.pt': {
'name': 'YOLOv8 Small',
'description': 'Small model balancing speed and accuracy.',
'speed': '⚡⚡⚡⚡',
'accuracy': '⭐⭐⭐',
'size': '22.4 MB',
'details': 'Good for general purpose detection with decent performance.'
},
'yolov8m.pt': {
'name': 'YOLOv8 Medium',
'description': 'Medium-sized model with good balance.',
'speed': '⚡⚡⚡',
'accuracy': '⭐⭐⭐⭐',
'size': '52.2 MB',
'details': 'Recommended for standard detection tasks with good GPU.'
},
'yolov8l.pt': {
'name': 'YOLOv8 Large',
'description': 'Large model with high accuracy.',
'speed': '⚡⚡',
'accuracy': '⭐⭐⭐⭐⭐',
'size': '87.7 MB',
'details': 'Best for high-accuracy requirements with good computing power.'
},
'yolov8x.pt': {
'name': 'YOLOv8 XLarge',
'description': 'Extra large model with highest accuracy.',
'speed': '⚡',
'accuracy': '⭐⭐⭐⭐⭐⭐',
'size': '131.7 MB',
'details': 'Best for tasks requiring maximum accuracy, requires powerful GPU.'
}
}
def main():
st.title("Real-Time Object Detection")
# Initialize session state
if 'tracker' not in st.session_state:
st.session_state.tracker = ObjectTracker()
if 'cap' not in st.session_state:
st.session_state.cap = None
if 'out' not in st.session_state:
st.session_state.out = None
if 'output_path' not in st.session_state:
st.session_state.output_path = None
if 'processed_frames' not in st.session_state:
st.session_state.processed_frames = 0
if 'selected_model' not in st.session_state:
st.session_state.selected_model = 'yolov8x.pt'
if 'model' not in st.session_state:
st.session_state.model = None
# Sidebar settings
st.sidebar.title("Settings")
# Model selection
st.sidebar.subheader("Model Selection")
model_info = get_model_info()
selected_model = st.sidebar.selectbox(
"Choose YOLO Model",
options=list(model_info.keys()),
format_func=lambda x: model_info[x]['name'],
index=list(model_info.keys()).index(st.session_state.selected_model)
)
# Display model information
with st.sidebar.expander("Model Details", expanded=True):
st.markdown(f"**{model_info[selected_model]['name']}**")
st.write(model_info[selected_model]['description'])
st.write(f"Speed: {model_info[selected_model]['speed']}")
st.write(f"Accuracy: {model_info[selected_model]['accuracy']}")
st.write(f"Size: {model_info[selected_model]['size']}")
st.write(f"Details: {model_info[selected_model]['details']}")
# Add Load Model button
if st.sidebar.button("Load Selected Model"):
with st.spinner(f"Loading {model_info[selected_model]['name']}..."):
st.session_state.model = load_model(selected_model)
st.session_state.selected_model = selected_model
st.sidebar.success("Model loaded successfully!")
# Detection confidence
detection_confidence = st.sidebar.slider("Detection Confidence", 0.0, 1.0, 0.5)
# Input selection
input_source = st.radio("Select Input Source", ["Video File", "Live Stream URL"])
try:
# Handle video input
if input_source == "Video File":
video_file = st.file_uploader("Upload Video", type=['mp4', 'avi'])
if video_file is not None:
st.session_state.cap, st.session_state.out, st.session_state.output_path = initialize_video_capture(input_source, video_file=video_file)
else:
url = st.text_input("Enter Stream URL")
if url:
st.session_state.cap, st.session_state.out, st.session_state.output_path = initialize_video_capture(input_source, url=url)
if st.session_state.cap is not None and not st.session_state.cap.isOpened():
st.error("Error: Could not open video source")
st.stop()
# Create placeholder for video display
video_placeholder = st.empty()
# Initialize frame buffer in session state
if 'frame_buffer' not in st.session_state:
st.session_state.frame_buffer = []
# Control buttons - Move them to sidebar to avoid duplication
st.sidebar.markdown("---")
st.sidebar.subheader("Controls")
start_button = st.sidebar.button("Start Detection")
stop_button = st.sidebar.button("Stop Detection")
if start_button:
if st.session_state.model is None:
st.error("Please load a model first using the 'Load Selected Model' button")
st.stop()
if st.session_state.cap is None:
st.error("Please upload a video or provide a stream URL first")
st.stop()
st.session_state.run_detection = True
st.session_state.processed_frames = 0
st.session_state.frame_buffer = [] # Clear buffer on start
if stop_button:
st.session_state.run_detection = False
# Detection loop
while (hasattr(st.session_state, 'run_detection') and
st.session_state.run_detection and
st.session_state.cap is not None):
ret, frame = st.session_state.cap.read()
if not ret:
break
# Perform detection
detections = detect_objects(st.session_state.model, frame, detection_confidence)
# Draw boxes on frame
annotated_frame = draw_boxes(frame, detections, st.session_state.tracker)
# Add frame to buffer
st.session_state.frame_buffer.append(annotated_frame)
# Write frames to video periodically
if len(st.session_state.frame_buffer) >= 30: # Write every 30 frames
for buffered_frame in st.session_state.frame_buffer:
if st.session_state.out is not None:
st.session_state.out.write(buffered_frame)
st.session_state.processed_frames += 1
st.session_state.frame_buffer.clear()
# Update display every 3rd frame
if st.session_state.processed_frames % 3 == 0:
video_placeholder.image(annotated_frame, channels="BGR")
# Minimal sleep to prevent UI freezing
time.sleep(0.001)
# Write remaining frames in buffer
if st.session_state.frame_buffer and st.session_state.out is not None:
for buffered_frame in st.session_state.frame_buffer:
st.session_state.out.write(buffered_frame)
st.session_state.processed_frames += 1
st.session_state.frame_buffer.clear()
except Exception as e:
st.error(f"An error occurred: {str(e)}")
raise e
finally:
# Ensure proper cleanup and save remaining frames
if hasattr(st.session_state, 'frame_buffer') and st.session_state.frame_buffer and hasattr(st.session_state, 'out') and st.session_state.out is not None:
for buffered_frame in st.session_state.frame_buffer:
st.session_state.out.write(buffered_frame)
st.session_state.processed_frames += 1
st.session_state.frame_buffer.clear()
# Release resources
if hasattr(st.session_state, 'cap') and st.session_state.cap is not None:
st.session_state.cap.release()
if hasattr(st.session_state, 'out') and st.session_state.out is not None:
st.session_state.out.release()
cv2.destroyAllWindows()
# Add a separator
st.markdown("---")
# Download section
if st.session_state.processed_frames > 0:
st.subheader("Download Processed Video")
# Force flush and wait
time.sleep(3) # Increased wait time
if (st.session_state.output_path and
Path(st.session_state.output_path).exists()):
try:
with open(st.session_state.output_path, 'rb') as f:
video_data = f.read()
if len(video_data) > 1000:
st.success(f"Successfully processed {st.session_state.processed_frames} frames")
# Make download button more prominent
st.download_button(
label="📥 Download Processed Video",
data=video_data,
file_name=f"detected_video_{time.strftime('%Y%m%d_%H%M%S')}.mp4",
mime="video/mp4",
key="download_button"
)
else:
st.error("Error: Video file is empty or corrupted")
st.info("Try processing the video again with different settings")
except Exception as e:
st.error(f"Error preparing download: {str(e)}")
st.info("Please try processing the video again")
else:
st.error("Output video file not found")
st.info("Make sure to complete the video processing before downloading")
if __name__ == "__main__":
main() |