Spaces:
Sleeping
Sleeping
File size: 9,354 Bytes
e926fee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import streamlit as st
import torch
from datasets import load_dataset
from peft import LoraConfig, get_peft_model, PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.training_args import TrainingArguments
from transformers.trainer import Trainer
import coremltools as ct
import os
import zipfile
import tempfile
MODEL_NAME = "distilbert/distilgpt2"
DATASET_NAME = "roneneldan/TinyStories"
ADAPTER_PATH = "distilgpt2-lora-tinystories"
@st.cache_resource
def load_base_model_and_tokenizer():
"""Loads the base model and tokenizer."""
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
return model, tokenizer
def load_and_prepare_dataset(tokenizer, split="train"):
"""Loads and tokenizes the dataset."""
dataset = load_dataset(DATASET_NAME, split=split)
def tokenize_function(examples):
tokenized = tokenizer(
examples["text"],
truncation=True,
padding="max_length",
max_length=256
)
# For causal language modeling, labels are the same as input_ids
tokenized["labels"] = tokenized["input_ids"].copy()
return tokenized
# Handle different dataset types safely
try:
if hasattr(dataset, 'column_names'):
remove_cols = dataset.column_names
else:
remove_cols = None
except:
remove_cols = None
tokenized_dataset = dataset.map(
tokenize_function,
batched=True,
remove_columns=remove_cols
)
return tokenized_dataset
def fine_tune_model(model, tokenizer, tokenized_dataset):
"""Fine-tunes the model using LoRA."""
lora_config = LoraConfig(
r=4,
lora_alpha=16,
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM",
)
peft_model = get_peft_model(model, lora_config)
peft_model.print_trainable_parameters()
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=0.5,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
gradient_accumulation_steps=4,
logging_steps=10,
save_steps=100,
eval_steps=50,
warmup_steps=10,
fp16=torch.cuda.is_available(),
dataloader_pin_memory=False,
remove_unused_columns=False,
max_steps=100,
)
trainer = Trainer(
model=peft_model,
args=training_args,
train_dataset=tokenized_dataset,
)
trainer.train()
peft_model.save_pretrained(ADAPTER_PATH)
return peft_model
def convert_to_coreml(model, tokenizer):
"""Converts the model to CoreML format."""
st.info("Merging LoRA adapter...")
merged_model = model.merge_and_unload()
st.success("Adapter merged.")
st.info("Moving model to CPU for CoreML conversion...")
merged_model = merged_model.cpu()
merged_model.eval()
st.success("Model moved to CPU.")
# Create a simple wrapper that only returns logits
class SimpleModel(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, input_ids):
outputs = self.model(input_ids)
return outputs.logits
simple_model = SimpleModel(merged_model)
st.info("Created simple model wrapper.")
st.info("Tracing the model...")
example_input = tokenizer("Once upon a time", return_tensors="pt")
input_ids = example_input.input_ids
# Ensure input is on CPU
input_ids = input_ids.cpu()
with torch.no_grad():
traced_model = torch.jit.trace(simple_model, input_ids)
st.success("Model traced.")
st.info("Converting to CoreML ML Program...")
coreml_model = ct.convert(
traced_model,
convert_to="mlprogram",
inputs=[ct.TensorType(name="input_ids", shape=(1, 512), dtype=int)],
compute_units=ct.ComputeUnit.CPU_ONLY,
)
st.success("Conversion to CoreML complete.")
output_path = f"{ADAPTER_PATH}.mlpackage"
# Save CoreML model using the correct method
try:
coreml_model.save(output_path)
except AttributeError:
# Alternative method for newer versions
ct.models.MLModel(coreml_model).save(output_path)
return output_path
def main():
st.title("LoRA Fine-Tuning of distilgpt2 for TinyStories")
st.write("This app fine-tunes the `distilbert/distilgpt2` model on the `TinyStories` dataset using LoRA and PEFT.")
# --- Load Model and Tokenizer ---
with st.spinner("Loading base model and tokenizer..."):
base_model, tokenizer = load_base_model_and_tokenizer()
st.session_state.base_model = base_model
st.session_state.tokenizer = tokenizer
st.success("Base model and tokenizer loaded.")
st.markdown(f"**Model:** `{MODEL_NAME}`")
# --- Fine-Tuning ---
st.header("1. LoRA Fine-Tuning")
if st.button("Start Fine-Tuning"):
with st.spinner("Loading dataset and fine-tuning... This might take a few minutes."):
tokenized_dataset = load_and_prepare_dataset(tokenizer)
st.session_state.tokenized_dataset = tokenized_dataset
# Safe way to get dataset length
try:
dataset_length = len(tokenized_dataset)
st.info(f"Dataset loaded with {dataset_length} examples.")
except (TypeError, AttributeError):
st.info("Dataset loaded (length unknown).")
peft_model = fine_tune_model(base_model, tokenizer, tokenized_dataset)
st.session_state.peft_model = peft_model
st.success("Fine-tuning complete! LoRA adapter saved.")
st.balloons()
# Check if adapter exists to offer loading it
if os.path.exists(ADAPTER_PATH) and "peft_model" not in st.session_state:
if st.button("Load Fine-Tuned LoRA Adapter"):
with st.spinner("Loading fine-tuned model..."):
peft_model = PeftModel.from_pretrained(base_model, ADAPTER_PATH)
st.session_state.peft_model = peft_model
st.success("Fine-tuned LoRA model loaded.")
# --- Text Generation ---
if "peft_model" in st.session_state:
st.header("2. Generate Story")
prompt = st.text_input("Enter a prompt to start a story:", "Once upon a time, in a land full of sunshine,")
# Generation parameters
col1, col2, col3 = st.columns(3)
with col1:
temperature = st.slider("Temperature", 0.1, 2.0, 0.8, 0.1)
with col2:
max_length = st.slider("Max Length", 50, 200, 100, 10)
with col3:
repetition_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.2, 0.1)
if st.button("Generate"):
with st.spinner("Generating text..."):
model = st.session_state.peft_model
inputs = tokenizer(prompt, return_tensors="pt")
device = next(model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = model.generate(
**inputs,
max_length=max_length,
num_return_sequences=1,
temperature=temperature,
do_sample=True,
top_k=50,
top_p=0.9,
repetition_penalty=repetition_penalty,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
st.write("### Generated Story:")
st.write(generated_text)
# --- CoreML Conversion ---
st.header("3. Convert to CoreML")
if st.button("Convert Model to CoreML"):
with st.spinner("Converting model to CoreML format..."):
coreml_model_path = convert_to_coreml(st.session_state.peft_model, st.session_state.tokenizer)
st.success(f"Model successfully converted and saved to `{coreml_model_path}`")
# For .mlpackage files, we need to create a zip file for download
zip_path = f"{ADAPTER_PATH}.zip"
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, dirs, files in os.walk(coreml_model_path):
for file in files:
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, coreml_model_path)
zipf.write(file_path, arcname)
with open(zip_path, "rb") as f:
st.download_button(
label="Download CoreML Model",
data=f,
file_name=os.path.basename(zip_path),
mime="application/zip"
)
if __name__ == "__main__":
main() |