Spaces:
Sleeping
Sleeping
File size: 5,805 Bytes
70de1d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
from diffusers import (
StableDiffusionXLControlNetImg2ImgPipeline,
ControlNetModel,
AutoencoderKL,
AutoencoderTiny,
)
from compel import Compel, ReturnedEmbeddingsType
from pydantic import BaseModel, Field
from utils.canny_gpu import SobelOperator
import torch
try:
import intel_extension_for_pytorch as ipex # type: ignore
except:
pass
import psutil
from PIL import Image
import math
import time
controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
model_id = "stabilityai/sdxl-turbo"
taesd_model = "madebyollin/taesdxl"
default_prompt = "Portrait of The Joker halloween costume, face painting, with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
class Pipeline:
class Info(BaseModel):
name: str = "controlnet+SDXL+Turbo"
title: str = "SDXL Turbo + Controlnet"
description: str = "Generates an image from a text prompt"
input_mode: str = "image"
class InputParams(BaseModel):
prompt: str = Field(
default_prompt,
title="Prompt",
field="textarea",
id="prompt",
)
negative_prompt: str = Field(
default_negative_prompt,
title="Negative Prompt",
field="textarea",
id="negative_prompt",
hide=True,
)
seed: int = Field(
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
)
steps: int = Field(
2, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
)
width: int = Field(
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
)
height: int = Field(
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
)
guidance_scale: float = Field(
1.0,
min=0,
max=10,
step=0.001,
title="Guidance Scale",
field="range",
hide=True,
id="guidance_scale",
)
strength: float = Field(
0.5,
min=0.25,
max=1.0,
step=0.001,
title="Strength",
field="range",
hide=True,
id="strength",
)
controlnet_scale: float = Field(
0.5,
min=0,
max=1.0,
step=0.001,
title="Controlnet Scale",
field="range",
hide=True,
id="controlnet_scale",
)
controlnet_start: float = Field(
0.0,
min=0,
max=1.0,
step=0.001,
title="Controlnet Start",
field="range",
hide=True,
id="controlnet_start",
)
controlnet_end: float = Field(
1.0,
min=0,
max=1.0,
step=0.001,
title="Controlnet End",
field="range",
hide=True,
id="controlnet_end",
)
canny_low_threshold: float = Field(
0.31,
min=0,
max=1.0,
step=0.001,
title="Canny Low Threshold",
field="range",
hide=True,
id="canny_low_threshold",
)
canny_high_threshold: float = Field(
0.125,
min=0,
max=1.0,
step=0.001,
title="Canny High Threshold",
field="range",
hide=True,
id="canny_high_threshold",
)
debug_canny: bool = Field(
False,
title="Debug Canny",
field="checkbox",
hide=True,
id="debug_canny",
)
def __init__(self, device: torch.device, torch_dtype: torch.dtype):
controlnet_canny = ControlNetModel.from_pretrained(
controlnet_model, torch_dtype=torch_dtype
).to(device)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
)
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
model_id,
controlnet=controlnet_canny,
vae=vae,
)
self.canny_torch = SobelOperator(device=device)
self.pipe.set_progress_bar_config(disable=True)
self.pipe.to(device=device, dtype=torch_dtype).to(device)
if device.type != "mps":
self.pipe.unet.to(memory_format=torch.channels_last)
if psutil.virtual_memory().total < 64 * 1024**3:
self.pipe.enable_attention_slicing()
self.pipe.compel_proc = Compel(
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
)
#if args.use_taesd:
self.pipe.vae = AutoencoderTiny.from_pretrained(
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
).to(device)
#if args.torch_compile:
self.pipe.unet = torch.compile(
self.pipe.unet, mode="reduce-overhead", fullgraph=True
)
self.pipe.vae = torch.compile(
self.pipe.vae, mode="reduce-overhead", fullgraph=True
)
self.pipe(
prompt="warmup",
image=[Image.new("RGB", (512, 512))],
control_image=[Image.new("RGB", (512, 512))],
)
|