Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,598 Bytes
458efe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 |
import scipy
import scipy.sparse.linalg as sla
# ^^^ we NEED to import scipy before torch, or it crashes :(
# (observed on Ubuntu 20.04 w/ torch 1.6.0 and scipy 1.5.2 installed via conda)
import os.path
import sys
import random
from multiprocessing import Pool
import numpy as np
import scipy.spatial
import torch
import sklearn.neighbors
import robust_laplacian
import potpourri3d as pp3d
def norm(x, highdim=False):
"""
Computes norm of an array of vectors. Given (shape,d), returns (shape) after norm along last dimension
"""
return torch.norm(x, dim=len(x.shape) - 1)
def norm2(x, highdim=False):
"""
Computes norm^2 of an array of vectors. Given (shape,d), returns (shape) after norm along last dimension
"""
return dot(x, x)
def normalize(x, divide_eps=1e-6, highdim=False):
"""
Computes norm^2 of an array of vectors. Given (shape,d), returns (shape) after norm along last dimension
"""
if (len(x.shape) == 1):
raise ValueError("called normalize() on single vector of dim " + str(x.shape) + " are you sure?")
if (not highdim and x.shape[-1] > 4):
raise ValueError("called normalize() with large last dimension " + str(x.shape) + " are you sure?")
return x / (norm(x, highdim=highdim) + divide_eps).unsqueeze(-1)
def face_coords(verts, faces):
coords = verts[faces]
return coords
def cross(vec_A, vec_B):
return torch.cross(vec_A, vec_B, dim=-1)
def dot(vec_A, vec_B):
return torch.sum(vec_A * vec_B, dim=-1)
# Given (..., 3) vectors and normals, projects out any components of vecs
# which lies in the direction of normals. Normals are assumed to be unit.
def project_to_tangent(vecs, unit_normals):
dots = dot(vecs, unit_normals)
return vecs - unit_normals * dots.unsqueeze(-1)
def face_area(verts, faces):
coords = face_coords(verts, faces)
vec_A = coords[:, 1, :] - coords[:, 0, :]
vec_B = coords[:, 2, :] - coords[:, 0, :]
raw_normal = cross(vec_A, vec_B)
return 0.5 * norm(raw_normal)
def face_normals(verts, faces, normalized=True):
coords = face_coords(verts, faces)
vec_A = coords[:, 1, :] - coords[:, 0, :]
vec_B = coords[:, 2, :] - coords[:, 0, :]
raw_normal = cross(vec_A, vec_B)
if normalized:
return normalize(raw_normal)
return raw_normal
def neighborhood_normal(points):
# points: (N, K, 3) array of neighborhood psoitions
# points should be centered at origin
# out: (N,3) array of normals
# numpy in, numpy out
(u, s, vh) = np.linalg.svd(points, full_matrices=False)
normal = vh[:, 2, :]
return normal / np.linalg.norm(normal, axis=-1, keepdims=True)
def mesh_vertex_normals(verts, faces):
# numpy in / out
face_n = toNP(face_normals(torch.tensor(verts), torch.tensor(faces))) # ugly torch <---> numpy
vertex_normals = np.zeros(verts.shape)
for i in range(3):
np.add.at(vertex_normals, faces[:, i], face_n)
vertex_normals = vertex_normals / np.linalg.norm(vertex_normals, axis=-1, keepdims=True)
return vertex_normals
def vertex_normals(verts, faces, n_neighbors_cloud=30):
verts_np = toNP(verts)
if faces.numel() == 0: # point cloud
_, neigh_inds = find_knn(verts, verts, n_neighbors_cloud, omit_diagonal=True, method='cpu_kd')
neigh_points = verts_np[neigh_inds, :]
neigh_points = neigh_points - verts_np[:, np.newaxis, :]
normals = neighborhood_normal(neigh_points)
else: # mesh
normals = mesh_vertex_normals(verts_np, toNP(faces))
# if any are NaN, wiggle slightly and recompute
bad_normals_mask = np.isnan(normals).any(axis=1, keepdims=True)
if bad_normals_mask.any():
bbox = np.amax(verts_np, axis=0) - np.amin(verts_np, axis=0)
scale = np.linalg.norm(bbox) * 1e-4
wiggle = (np.random.RandomState(seed=777).rand(*verts.shape) - 0.5) * scale
wiggle_verts = verts_np + bad_normals_mask * wiggle
normals = mesh_vertex_normals(wiggle_verts, toNP(faces))
# if still NaN assign random normals (probably means unreferenced verts in mesh)
bad_normals_mask = np.isnan(normals).any(axis=1)
if bad_normals_mask.any():
normals[bad_normals_mask, :] = (np.random.RandomState(seed=777).rand(*verts.shape) - 0.5)[bad_normals_mask, :]
normals = normals / np.linalg.norm(normals, axis=-1)[:, np.newaxis]
normals = torch.from_numpy(normals).to(device=verts.device, dtype=verts.dtype)
if torch.any(torch.isnan(normals)):
raise ValueError("NaN normals :(")
return normals
def build_tangent_frames(verts, faces, normals=None):
V = verts.shape[0]
dtype = verts.dtype
device = verts.device
if normals == None:
vert_normals = vertex_normals(verts, faces) # (V,3)
else:
vert_normals = normals
# = find an orthogonal basis
basis_cand1 = torch.tensor([1, 0, 0]).to(device=device, dtype=dtype).expand(V, -1)
basis_cand2 = torch.tensor([0, 1, 0]).to(device=device, dtype=dtype).expand(V, -1)
basisX = torch.where((torch.abs(dot(vert_normals, basis_cand1)) < 0.9).unsqueeze(-1), basis_cand1, basis_cand2)
basisX = project_to_tangent(basisX, vert_normals)
basisX = normalize(basisX)
basisY = cross(vert_normals, basisX)
frames = torch.stack((basisX, basisY, vert_normals), dim=-2)
if torch.any(torch.isnan(frames)):
raise ValueError("NaN coordinate frame! Must be very degenerate")
return frames
def build_grad_point_cloud(verts, frames, n_neighbors_cloud=30):
verts_np = toNP(verts)
frames_np = toNP(frames)
_, neigh_inds = find_knn(verts, verts, n_neighbors_cloud, omit_diagonal=True, method='cpu_kd')
neigh_points = verts_np[neigh_inds, :]
neigh_vecs = neigh_points - verts_np[:, np.newaxis, :]
# TODO this could easily be way faster. For instance we could avoid the weird edges format and the corresponding pure-python loop via some numpy broadcasting of the same logic. The way it works right now is just to share code with the mesh version. But its low priority since its preprocessing code.
edge_inds_from = np.repeat(np.arange(verts.shape[0]), n_neighbors_cloud)
edges = np.stack((edge_inds_from, neigh_inds.flatten()))
edge_tangent_vecs = edge_tangent_vectors(verts, frames, edges)
return build_grad(verts_np, torch.tensor(edges), edge_tangent_vecs)
def edge_tangent_vectors(verts, frames, edges):
edge_vecs = verts[edges[1, :], :] - verts[edges[0, :], :]
basisX = frames[edges[0, :], 0, :]
basisY = frames[edges[0, :], 1, :]
compX = dot(edge_vecs, basisX)
compY = dot(edge_vecs, basisY)
edge_tangent = torch.stack((compX, compY), dim=-1)
return edge_tangent
def build_grad(verts, edges, edge_tangent_vectors):
"""
Build a (V, V) complex sparse matrix grad operator. Given real inputs at vertices, produces a complex (vector value) at vertices giving the gradient. All values pointwise.
- edges: (2, E)
"""
edges_np = toNP(edges)
edge_tangent_vectors_np = toNP(edge_tangent_vectors)
# TODO find a way to do this in pure numpy?
# Build outgoing neighbor lists
N = verts.shape[0]
vert_edge_outgoing = [[] for i in range(N)]
for iE in range(edges_np.shape[1]):
tail_ind = edges_np[0, iE]
tip_ind = edges_np[1, iE]
if tip_ind != tail_ind:
vert_edge_outgoing[tail_ind].append(iE)
# Build local inversion matrix for each vertex
row_inds = []
col_inds = []
data_vals = []
eps_reg = 1e-5
for iV in range(N):
n_neigh = len(vert_edge_outgoing[iV])
lhs_mat = np.zeros((n_neigh, 2))
rhs_mat = np.zeros((n_neigh, n_neigh + 1))
ind_lookup = [iV]
for i_neigh in range(n_neigh):
iE = vert_edge_outgoing[iV][i_neigh]
jV = edges_np[1, iE]
ind_lookup.append(jV)
edge_vec = edge_tangent_vectors[iE][:]
w_e = 1.
lhs_mat[i_neigh][:] = w_e * edge_vec
rhs_mat[i_neigh][0] = w_e * (-1)
rhs_mat[i_neigh][i_neigh + 1] = w_e * 1
lhs_T = lhs_mat.T
lhs_inv = np.linalg.inv(lhs_T @ lhs_mat + eps_reg * np.identity(2)) @ lhs_T
sol_mat = lhs_inv @ rhs_mat
sol_coefs = (sol_mat[0, :] + 1j * sol_mat[1, :]).T
for i_neigh in range(n_neigh + 1):
i_glob = ind_lookup[i_neigh]
row_inds.append(iV)
col_inds.append(i_glob)
data_vals.append(sol_coefs[i_neigh])
# build the sparse matrix
row_inds = np.array(row_inds)
col_inds = np.array(col_inds)
data_vals = np.array(data_vals)
mat = scipy.sparse.coo_matrix((data_vals, (row_inds, col_inds)), shape=(N, N)).tocsc()
return mat
def compute_operators(verts, faces, k_eig, normals=None):
"""
Builds spectral operators for a mesh/point cloud. Constructs mass matrix, eigenvalues/vectors for Laplacian, and gradient matrix.
See get_operators() for a similar routine that wraps this one with a layer of caching.
Torch in / torch out.
Arguments:
- vertices: (V,3) vertex positions
- faces: (F,3) list of triangular faces. If empty, assumed to be a point cloud.
- k_eig: number of eigenvectors to use
Returns:
- frames: (V,3,3) X/Y/Z coordinate frame at each vertex. Z coordinate is normal (e.g. [:,2,:] for normals)
- massvec: (V) real diagonal of lumped mass matrix
- L: (VxV) real sparse matrix of (weak) Laplacian
- evals: (k) list of eigenvalues of the Laplacian
- evecs: (V,k) list of eigenvectors of the Laplacian
- gradX: (VxV) sparse matrix which gives X-component of gradient in the local basis at the vertex
- gradY: same as gradX but for Y-component of gradient
PyTorch doesn't seem to like complex sparse matrices, so we store the "real" and "imaginary" (aka X and Y) gradient matrices separately, rather than as one complex sparse matrix.
Note: for a generalized eigenvalue problem, the mass matrix matters! The eigenvectors are only othrthonormal with respect to the mass matrix, like v^H M v, so the mass (given as the diagonal vector massvec) needs to be used in projections, etc.
"""
device = verts.device
dtype = verts.dtype
V = verts.shape[0]
is_cloud = faces.numel() == 0
eps = 1e-8
verts_np = toNP(verts).astype(np.float64)
faces_np = toNP(faces)
frames = build_tangent_frames(verts, faces, normals=normals)
frames_np = toNP(frames)
# Build the scalar Laplacian
if is_cloud:
L, M = robust_laplacian.point_cloud_laplacian(verts_np)
massvec_np = M.diagonal()
else:
# L, M = robust_laplacian.mesh_laplacian(verts_np, faces_np)
# massvec_np = M.diagonal()
L = pp3d.cotan_laplacian(verts_np, faces_np, denom_eps=1e-10)
massvec_np = pp3d.vertex_areas(verts_np, faces_np)
massvec_np += eps * np.mean(massvec_np)
if (np.isnan(L.data).any()):
raise RuntimeError("NaN Laplace matrix")
if (np.isnan(massvec_np).any()):
raise RuntimeError("NaN mass matrix")
# Read off neighbors & rotations from the Laplacian
L_coo = L.tocoo()
inds_row = L_coo.row
inds_col = L_coo.col
# === Compute the eigenbasis
if k_eig > 0:
# Prepare matrices
L_eigsh = (L + scipy.sparse.identity(L.shape[0]) * eps).tocsc()
massvec_eigsh = massvec_np
Mmat = scipy.sparse.diags(massvec_eigsh)
eigs_sigma = eps
failcount = 0
while True:
try:
# We would be happy here to lower tol or maxiter since we don't need these to be super precise, but for some reason those parameters seem to have no effect
evals_np, evecs_np = sla.eigsh(L_eigsh, k=k_eig, M=Mmat, sigma=eigs_sigma)
# Clip off any eigenvalues that end up slightly negative due to numerical weirdness
evals_np = np.clip(evals_np, a_min=0., a_max=float('inf'))
break
except Exception as e:
print(e)
if (failcount > 3):
raise ValueError("failed to compute eigendecomp")
failcount += 1
print("--- decomp failed; adding eps ===> count: " + str(failcount))
L_eigsh = L_eigsh + scipy.sparse.identity(L.shape[0]) * (eps * 10**failcount)
else: #k_eig == 0
evals_np = np.zeros((0))
evecs_np = np.zeros((verts.shape[0], 0))
# == Build gradient matrices
# For meshes, we use the same edges as were used to build the Laplacian. For point clouds, use a whole local neighborhood
if is_cloud:
grad_mat_np = build_grad_point_cloud(verts, frames)
else:
edges = torch.tensor(np.stack((inds_row, inds_col), axis=0), device=device, dtype=faces.dtype)
edge_vecs = edge_tangent_vectors(verts, frames, edges)
grad_mat_np = build_grad(verts.cpu(), edges.cpu(), edge_vecs.cpu())
# Split complex gradient in to two real sparse mats (torch doesn't like complex sparse matrices)
gradX_np = np.real(grad_mat_np)
gradY_np = np.imag(grad_mat_np)
# === Convert back to torch
massvec = torch.from_numpy(massvec_np).to(device=device, dtype=dtype)
L = utils.sparse_np_to_torch(L).to(device=device, dtype=dtype)
evals = torch.from_numpy(evals_np).to(device=device, dtype=dtype)
evecs = torch.from_numpy(evecs_np).to(device=device, dtype=dtype)
gradX = utils.sparse_np_to_torch(gradX_np).to(device=device, dtype=dtype)
gradY = utils.sparse_np_to_torch(gradY_np).to(device=device, dtype=dtype)
return frames, massvec, L, evals, evecs, gradX, gradY
def get_all_operators(verts_list, faces_list, k_eig, op_cache_dir=None, normals=None):
N = len(verts_list)
frames = [None] * N
massvec = [None] * N
L = [None] * N
evals = [None] * N
evecs = [None] * N
gradX = [None] * N
gradY = [None] * N
inds = [i for i in range(N)]
# process in random order
# random.shuffle(inds)
for num, i in enumerate(inds):
print("get_all_operators() processing {} / {} {:.3f}%".format(num, N, num / N * 100))
if normals is None:
outputs = get_operators(verts_list[i], faces_list[i], k_eig, op_cache_dir)
else:
outputs = get_operators(verts_list[i], faces_list[i], k_eig, op_cache_dir, normals=normals[i])
frames[i] = outputs[0]
massvec[i] = outputs[1]
L[i] = outputs[2]
evals[i] = outputs[3]
evecs[i] = outputs[4]
gradX[i] = outputs[5]
gradY[i] = outputs[6]
return frames, massvec, L, evals, evecs, gradX, gradY
def get_operators(verts, faces, k_eig=128, op_cache_dir=None, normals=None, overwrite_cache=False):
"""
See documentation for compute_operators(). This essentailly just wraps a call to compute_operators, using a cache if possible.
All arrays are always computed using double precision for stability, then truncated to single precision floats to store on disk, and finally returned as a tensor with dtype/device matching the `verts` input.
"""
device = verts.device
dtype = verts.dtype
verts_np = toNP(verts)
faces_np = toNP(faces)
is_cloud = faces.numel() == 0
if (np.isnan(verts_np).any()):
raise RuntimeError("tried to construct operators from NaN verts")
# Check the cache directory
# Note 1: Collisions here are exceptionally unlikely, so we could probably just use the hash...
# but for good measure we check values nonetheless.
# Note 2: There is a small possibility for race conditions to lead to bucket gaps or duplicate
# entries in this cache. The good news is that that is totally fine, and at most slightly
# slows performance with rare extra cache misses.
found = False
if op_cache_dir is not None:
utils.ensure_dir_exists(op_cache_dir)
hash_key_str = str(utils.hash_arrays((verts_np, faces_np)))
# print("Building operators for input with hash: " + hash_key_str)
# Search through buckets with matching hashes. When the loop exits, this
# is the bucket index of the file we should write to.
i_cache_search = 0
while True:
# Form the name of the file to check
search_path = os.path.join(op_cache_dir, hash_key_str + "_" + str(i_cache_search) + ".npz")
try:
# print('loading path: ' + str(search_path))
npzfile = np.load(search_path, allow_pickle=True)
cache_verts = npzfile["verts"]
cache_faces = npzfile["faces"]
cache_k_eig = npzfile["k_eig"].item()
# If the cache doesn't match, keep looking
if (not np.array_equal(verts, cache_verts)) or (not np.array_equal(faces, cache_faces)):
i_cache_search += 1
print("hash collision! searching next.")
continue
# print(" cache hit!")
# If we're overwriting, or there aren't enough eigenvalues, just delete it; we'll create a new
# entry below more eigenvalues
if overwrite_cache:
print(" overwriting cache by request")
os.remove(search_path)
break
if cache_k_eig < k_eig:
print(" overwriting cache --- not enough eigenvalues")
os.remove(search_path)
break
if "L_data" not in npzfile:
print(" overwriting cache --- entries are absent")
os.remove(search_path)
break
def read_sp_mat(prefix):
data = npzfile[prefix + "_data"]
indices = npzfile[prefix + "_indices"]
indptr = npzfile[prefix + "_indptr"]
shape = npzfile[prefix + "_shape"]
mat = scipy.sparse.csc_matrix((data, indices, indptr), shape=shape)
return mat
# This entry matches! Return it.
frames = npzfile["frames"]
mass = npzfile["mass"]
L = read_sp_mat("L")
evals = npzfile["evals"][:k_eig]
evecs = npzfile["evecs"][:, :k_eig]
gradX = read_sp_mat("gradX")
gradY = read_sp_mat("gradY")
frames = torch.from_numpy(frames).to(device=device, dtype=dtype)
mass = torch.from_numpy(mass).to(device=device, dtype=dtype)
L = utils.sparse_np_to_torch(L).to(device=device, dtype=dtype)
evals = torch.from_numpy(evals).to(device=device, dtype=dtype)
evecs = torch.from_numpy(evecs).to(device=device, dtype=dtype)
gradX = utils.sparse_np_to_torch(gradX).to(device=device, dtype=dtype)
gradY = utils.sparse_np_to_torch(gradY).to(device=device, dtype=dtype)
found = True
break
except FileNotFoundError:
print(" cache miss -- constructing operators")
break
except Exception as E:
print("unexpected error loading file: " + str(E))
print("-- constructing operators")
break
if not found:
# No matching entry found; recompute.
frames, mass, L, evals, evecs, gradX, gradY = compute_operators(verts, faces, k_eig, normals=normals)
dtype_np = np.float32
# Store it in the cache
if op_cache_dir is not None:
L_np = utils.sparse_torch_to_np(L).astype(dtype_np)
gradX_np = utils.sparse_torch_to_np(gradX).astype(dtype_np)
gradY_np = utils.sparse_torch_to_np(gradY).astype(dtype_np)
np.savez(
search_path,
verts=verts_np.astype(dtype_np),
frames=toNP(frames).astype(dtype_np),
faces=faces_np,
k_eig=k_eig,
mass=toNP(mass).astype(dtype_np),
L_data=L_np.data.astype(dtype_np),
L_indices=L_np.indices,
L_indptr=L_np.indptr,
L_shape=L_np.shape,
evals=toNP(evals).astype(dtype_np),
evecs=toNP(evecs).astype(dtype_np),
gradX_data=gradX_np.data.astype(dtype_np),
gradX_indices=gradX_np.indices,
gradX_indptr=gradX_np.indptr,
gradX_shape=gradX_np.shape,
gradY_data=gradY_np.data.astype(dtype_np),
gradY_indices=gradY_np.indices,
gradY_indptr=gradY_np.indptr,
gradY_shape=gradY_np.shape,
)
return frames, mass, L, evals, evecs, gradX, gradY
def to_basis(values, basis, massvec):
"""
Transform data in to an orthonormal basis (where orthonormal is wrt to massvec)
Inputs:
- values: (B,V,D)
- basis: (B,V,K)
- massvec: (B,V)
Outputs:
- (B,K,D) transformed values
"""
basisT = basis.transpose(-2, -1)
return torch.matmul(basisT, values * massvec.unsqueeze(-1))
def from_basis(values, basis):
"""
Transform data out of an orthonormal basis
Inputs:
- values: (K,D)
- basis: (V,K)
Outputs:
- (V,D) reconstructed values
"""
if values.is_complex() or basis.is_complex():
return utils.cmatmul(utils.ensure_complex(basis), utils.ensure_complex(values))
else:
return torch.matmul(basis, values)
def compute_hks(evals, evecs, scales):
"""
Inputs:
- evals: (K) eigenvalues
- evecs: (V,K) values
- scales: (S) times
Outputs:
- (V,S) hks values
"""
# expand batch
if len(evals.shape) == 1:
expand_batch = True
evals = evals.unsqueeze(0)
evecs = evecs.unsqueeze(0)
scales = scales.unsqueeze(0)
else:
expand_batch = False
# TODO could be a matmul
power_coefs = torch.exp(-evals.unsqueeze(1) * scales.unsqueeze(-1)).unsqueeze(1) # (B,1,S,K)
terms = power_coefs * (evecs * evecs).unsqueeze(2) # (B,V,S,K)
out = torch.sum(terms, dim=-1) # (B,V,S)
if expand_batch:
return out.squeeze(0)
else:
return out
def compute_hks_autoscale(evals, evecs, count):
# these scales roughly approximate those suggested in the hks paper
scales = torch.logspace(-2, 0., steps=count, device=evals.device, dtype=evals.dtype)
return compute_hks(evals, evecs, scales)
def normalize_positions(pos, faces=None, method='mean', scale_method='max_rad'):
# center and unit-scale positions
if method == 'mean':
# center using the average point position
pos = (pos - torch.mean(pos, dim=-2, keepdim=True))
elif method == 'bbox':
# center via the middle of the axis-aligned bounding box
bbox_min = torch.min(pos, dim=-2).values
bbox_max = torch.max(pos, dim=-2).values
center = (bbox_max + bbox_min) / 2.
pos -= center.unsqueeze(-2)
else:
raise ValueError("unrecognized method")
if scale_method == 'max_rad':
scale = torch.max(norm(pos), dim=-1, keepdim=True).values.unsqueeze(-1)
pos = pos / scale
elif scale_method == 'area':
if faces is None:
raise ValueError("must pass faces for area normalization")
coords = pos[faces]
vec_A = coords[:, 1, :] - coords[:, 0, :]
vec_B = coords[:, 2, :] - coords[:, 0, :]
face_areas = torch.norm(torch.cross(vec_A, vec_B, dim=-1), dim=1) * 0.5
total_area = torch.sum(face_areas)
scale = (1. / torch.sqrt(total_area))
pos = pos * scale
else:
raise ValueError("unrecognized scale method")
return pos
# Finds the k nearest neighbors of source on target.
# Return is two tensors (distances, indices). Returned points will be sorted in increasing order of distance.
def find_knn(points_source, points_target, k, largest=False, omit_diagonal=False, method='brute'):
if omit_diagonal and points_source.shape[0] != points_target.shape[0]:
raise ValueError("omit_diagonal can only be used when source and target are same shape")
if method != 'cpu_kd' and points_source.shape[0] * points_target.shape[0] > 1e8:
method = 'cpu_kd'
print("switching to cpu_kd knn")
if method == 'brute':
# Expand so both are NxMx3 tensor
points_source_expand = points_source.unsqueeze(1)
points_source_expand = points_source_expand.expand(-1, points_target.shape[0], -1)
points_target_expand = points_target.unsqueeze(0)
points_target_expand = points_target_expand.expand(points_source.shape[0], -1, -1)
diff_mat = points_source_expand - points_target_expand
dist_mat = norm(diff_mat)
if omit_diagonal:
torch.diagonal(dist_mat)[:] = float('inf')
result = torch.topk(dist_mat, k=k, largest=largest, sorted=True)
return result
elif method == 'cpu_kd':
if largest:
raise ValueError("can't do largest with cpu_kd")
points_source_np = toNP(points_source)
points_target_np = toNP(points_target)
# Build the tree
kd_tree = sklearn.neighbors.KDTree(points_target_np)
k_search = k + 1 if omit_diagonal else k
_, neighbors = kd_tree.query(points_source_np, k=k_search)
if omit_diagonal:
# Mask out self element
mask = neighbors != np.arange(neighbors.shape[0])[:, np.newaxis]
# make sure we mask out exactly one element in each row, in rare case of many duplicate points
mask[np.sum(mask, axis=1) == mask.shape[1], -1] = False
neighbors = neighbors[mask].reshape((neighbors.shape[0], neighbors.shape[1] - 1))
inds = torch.tensor(neighbors, device=points_source.device, dtype=torch.int64)
dists = norm(points_source.unsqueeze(1).expand(-1, k, -1) - points_target[inds])
return dists, inds
else:
raise ValueError("unrecognized method")
def farthest_point_sampling(points, n_sample):
# Torch in, torch out. Returns a |V| mask with n_sample elements set to true.
N = points.shape[0]
if (n_sample > N):
raise ValueError("not enough points to sample")
chosen_mask = torch.zeros(N, dtype=torch.bool, device=points.device)
min_dists = torch.ones(N, dtype=points.dtype, device=points.device) * float('inf')
# pick the centermost first point
points = normalize_positions(points)
i = torch.min(norm2(points), dim=0).indices
chosen_mask[i] = True
for _ in range(n_sample - 1):
# update distance
dists = norm2(points[i, :].unsqueeze(0) - points)
min_dists = torch.minimum(dists, min_dists)
# take the farthest
i = torch.max(min_dists, dim=0).indices.item()
chosen_mask[i] = True
return chosen_mask
def geodesic_label_errors(target_verts,
target_faces,
pred_labels,
gt_labels,
normalization='diameter',
geodesic_cache_dir=None):
"""
Return a vector of distances between predicted and ground-truth lables (normalized by geodesic diameter or area)
This method is SLOW when it needs to recompute geodesic distances.
"""
# move all to numpy cpu
target_verts = toNP(target_verts)
target_faces = toNP(target_faces)
pred_labels = toNP(pred_labels)
gt_labels = toNP(gt_labels)
dists = get_all_pairs_geodesic_distance(target_verts, target_faces, geodesic_cache_dir)
result_dists = dists[pred_labels, gt_labels]
if normalization == 'diameter':
geodesic_diameter = np.max(dists)
normalized_result_dists = result_dists / geodesic_diameter
elif normalization == 'area':
total_area = torch.sum(face_area(torch.tensor(target_verts), torch.tensor(target_faces)))
normalized_result_dists = result_dists / torch.sqrt(total_area)
else:
raise ValueError('unrecognized normalization')
return normalized_result_dists
# This function and the helper class below are to support parallel computation of all-pairs geodesic distance
def all_pairs_geodesic_worker(verts, faces, i):
import igl
N = verts.shape[0]
# TODO: this re-does a ton of work, since it is called independently each time. Some custom C++ code could surely make it faster.
sources = np.array([i])[:, np.newaxis]
targets = np.arange(N)[:, np.newaxis]
dist_vec = igl.exact_geodesic(verts, faces, sources, targets)
return dist_vec
class AllPairsGeodesicEngine(object):
def __init__(self, verts, faces):
self.verts = verts
self.faces = faces
def __call__(self, i):
return all_pairs_geodesic_worker(self.verts, self.faces, i)
def get_all_pairs_geodesic_distance(verts_np, faces_np, geodesic_cache_dir=None):
"""
Return a gigantic VxV dense matrix containing the all-pairs geodesic distance matrix. Internally caches, recomputing only if necessary.
(numpy in, numpy out)
"""
# need libigl for geodesic call
try:
import igl
except ImportError as e:
raise ImportError("Must have python libigl installed for all-pairs geodesics. `conda install -c conda-forge igl`")
# Check the cache
found = False
if geodesic_cache_dir is not None:
utils.ensure_dir_exists(geodesic_cache_dir)
hash_key_str = str(utils.hash_arrays((verts_np, faces_np)))
# print("Building operators for input with hash: " + hash_key_str)
# Search through buckets with matching hashes. When the loop exits, this
# is the bucket index of the file we should write to.
i_cache_search = 0
while True:
# Form the name of the file to check
search_path = os.path.join(geodesic_cache_dir, hash_key_str + "_" + str(i_cache_search) + ".npz")
try:
npzfile = np.load(search_path, allow_pickle=True)
cache_verts = npzfile["verts"]
cache_faces = npzfile["faces"]
# If the cache doesn't match, keep looking
if (not np.array_equal(verts_np, cache_verts)) or (not np.array_equal(faces_np, cache_faces)):
i_cache_search += 1
continue
# This entry matches! Return it.
found = True
result_dists = npzfile["dist"]
break
except FileNotFoundError:
break
if not found:
print("Computing all-pairs geodesic distance (warning: SLOW!)")
# Not found, compute from scratch
# warning: slowwwwwww
N = verts_np.shape[0]
try:
pool = Pool(None) # on 8 processors
engine = AllPairsGeodesicEngine(verts_np, faces_np)
outputs = pool.map(engine, range(N))
finally: # To make sure processes are closed in the end, even if errors happen
pool.close()
pool.join()
result_dists = np.array(outputs)
# replace any failed values with nan
result_dists = np.nan_to_num(result_dists, nan=np.nan, posinf=np.nan, neginf=np.nan)
# we expect that this should be a symmetric matrix, but it might not be. Take the min of the symmetric values to make it symmetric
result_dists = np.fmin(result_dists, np.transpose(result_dists))
# on rare occaisions MMP fails, yielding nan/inf; set it to the largest non-failed value if so
max_dist = np.nanmax(result_dists)
result_dists = np.nan_to_num(result_dists, nan=max_dist, posinf=max_dist, neginf=max_dist)
print("...finished computing all-pairs geodesic distance")
# put it in the cache if possible
if geodesic_cache_dir is not None:
print("saving geodesic distances to cache: " + str(geodesic_cache_dir))
# TODO we're potentially saving a double precision but only using a single
# precision here; could save storage by always saving as floats
np.savez(search_path, verts=verts_np, faces=faces_np, dist=result_dists)
return result_dists
|