File size: 7,890 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# Copyright (c) Facebook, Inc. and its affiliates.
"""
Backward compatibility of configs.
Instructions to bump version:
+ It's not needed to bump version if new keys are added.
It's only needed when backward-incompatible changes happen
(i.e., some existing keys disappear, or the meaning of a key changes)
+ To bump version, do the following:
1. Increment _C.VERSION in defaults.py
2. Add a converter in this file.
Each ConverterVX has a function "upgrade" which in-place upgrades config from X-1 to X,
and a function "downgrade" which in-place downgrades config from X to X-1
In each function, VERSION is left unchanged.
Each converter assumes that its input has the relevant keys
(i.e., the input is not a partial config).
3. Run the tests (test_config.py) to make sure the upgrade & downgrade
functions are consistent.
"""
import logging
from typing import List, Optional, Tuple
from .config import CfgNode as CN
from .defaults import _C
__all__ = ["upgrade_config", "downgrade_config"]
def upgrade_config(cfg: CN, to_version: Optional[int] = None) -> CN:
"""
Upgrade a config from its current version to a newer version.
Args:
cfg (CfgNode):
to_version (int): defaults to the latest version.
"""
cfg = cfg.clone()
if to_version is None:
to_version = _C.VERSION
assert cfg.VERSION <= to_version, "Cannot upgrade from v{} to v{}!".format(
cfg.VERSION, to_version
)
for k in range(cfg.VERSION, to_version):
converter = globals()["ConverterV" + str(k + 1)]
converter.upgrade(cfg)
cfg.VERSION = k + 1
return cfg
def downgrade_config(cfg: CN, to_version: int) -> CN:
"""
Downgrade a config from its current version to an older version.
Args:
cfg (CfgNode):
to_version (int):
Note:
A general downgrade of arbitrary configs is not always possible due to the
different functionalities in different versions.
The purpose of downgrade is only to recover the defaults in old versions,
allowing it to load an old partial yaml config.
Therefore, the implementation only needs to fill in the default values
in the old version when a general downgrade is not possible.
"""
cfg = cfg.clone()
assert cfg.VERSION >= to_version, "Cannot downgrade from v{} to v{}!".format(
cfg.VERSION, to_version
)
for k in range(cfg.VERSION, to_version, -1):
converter = globals()["ConverterV" + str(k)]
converter.downgrade(cfg)
cfg.VERSION = k - 1
return cfg
def guess_version(cfg: CN, filename: str) -> int:
"""
Guess the version of a partial config where the VERSION field is not specified.
Returns the version, or the latest if cannot make a guess.
This makes it easier for users to migrate.
"""
logger = logging.getLogger(__name__)
def _has(name: str) -> bool:
cur = cfg
for n in name.split("."):
if n not in cur:
return False
cur = cur[n]
return True
# Most users' partial configs have "MODEL.WEIGHT", so guess on it
ret = None
if _has("MODEL.WEIGHT") or _has("TEST.AUG_ON"):
ret = 1
if ret is not None:
logger.warning("Config '{}' has no VERSION. Assuming it to be v{}.".format(filename, ret))
else:
ret = _C.VERSION
logger.warning(
"Config '{}' has no VERSION. Assuming it to be compatible with latest v{}.".format(
filename, ret
)
)
return ret
def _rename(cfg: CN, old: str, new: str) -> None:
old_keys = old.split(".")
new_keys = new.split(".")
def _set(key_seq: List[str], val: str) -> None:
cur = cfg
for k in key_seq[:-1]:
if k not in cur:
cur[k] = CN()
cur = cur[k]
cur[key_seq[-1]] = val
def _get(key_seq: List[str]) -> CN:
cur = cfg
for k in key_seq:
cur = cur[k]
return cur
def _del(key_seq: List[str]) -> None:
cur = cfg
for k in key_seq[:-1]:
cur = cur[k]
del cur[key_seq[-1]]
if len(cur) == 0 and len(key_seq) > 1:
_del(key_seq[:-1])
_set(new_keys, _get(old_keys))
_del(old_keys)
class _RenameConverter:
"""
A converter that handles simple rename.
"""
RENAME: List[Tuple[str, str]] = [] # list of tuples of (old name, new name)
@classmethod
def upgrade(cls, cfg: CN) -> None:
for old, new in cls.RENAME:
_rename(cfg, old, new)
@classmethod
def downgrade(cls, cfg: CN) -> None:
for old, new in cls.RENAME[::-1]:
_rename(cfg, new, old)
class ConverterV1(_RenameConverter):
RENAME = [("MODEL.RPN_HEAD.NAME", "MODEL.RPN.HEAD_NAME")]
class ConverterV2(_RenameConverter):
"""
A large bulk of rename, before public release.
"""
RENAME = [
("MODEL.WEIGHT", "MODEL.WEIGHTS"),
("MODEL.PANOPTIC_FPN.SEMANTIC_LOSS_SCALE", "MODEL.SEM_SEG_HEAD.LOSS_WEIGHT"),
("MODEL.PANOPTIC_FPN.RPN_LOSS_SCALE", "MODEL.RPN.LOSS_WEIGHT"),
("MODEL.PANOPTIC_FPN.INSTANCE_LOSS_SCALE", "MODEL.PANOPTIC_FPN.INSTANCE_LOSS_WEIGHT"),
("MODEL.PANOPTIC_FPN.COMBINE_ON", "MODEL.PANOPTIC_FPN.COMBINE.ENABLED"),
(
"MODEL.PANOPTIC_FPN.COMBINE_OVERLAP_THRESHOLD",
"MODEL.PANOPTIC_FPN.COMBINE.OVERLAP_THRESH",
),
(
"MODEL.PANOPTIC_FPN.COMBINE_STUFF_AREA_LIMIT",
"MODEL.PANOPTIC_FPN.COMBINE.STUFF_AREA_LIMIT",
),
(
"MODEL.PANOPTIC_FPN.COMBINE_INSTANCES_CONFIDENCE_THRESHOLD",
"MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH",
),
("MODEL.ROI_HEADS.SCORE_THRESH", "MODEL.ROI_HEADS.SCORE_THRESH_TEST"),
("MODEL.ROI_HEADS.NMS", "MODEL.ROI_HEADS.NMS_THRESH_TEST"),
("MODEL.RETINANET.INFERENCE_SCORE_THRESHOLD", "MODEL.RETINANET.SCORE_THRESH_TEST"),
("MODEL.RETINANET.INFERENCE_TOPK_CANDIDATES", "MODEL.RETINANET.TOPK_CANDIDATES_TEST"),
("MODEL.RETINANET.INFERENCE_NMS_THRESHOLD", "MODEL.RETINANET.NMS_THRESH_TEST"),
("TEST.DETECTIONS_PER_IMG", "TEST.DETECTIONS_PER_IMAGE"),
("TEST.AUG_ON", "TEST.AUG.ENABLED"),
("TEST.AUG_MIN_SIZES", "TEST.AUG.MIN_SIZES"),
("TEST.AUG_MAX_SIZE", "TEST.AUG.MAX_SIZE"),
("TEST.AUG_FLIP", "TEST.AUG.FLIP"),
]
@classmethod
def upgrade(cls, cfg: CN) -> None:
super().upgrade(cfg)
if cfg.MODEL.META_ARCHITECTURE == "RetinaNet":
_rename(
cfg, "MODEL.RETINANET.ANCHOR_ASPECT_RATIOS", "MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS"
)
_rename(cfg, "MODEL.RETINANET.ANCHOR_SIZES", "MODEL.ANCHOR_GENERATOR.SIZES")
del cfg["MODEL"]["RPN"]["ANCHOR_SIZES"]
del cfg["MODEL"]["RPN"]["ANCHOR_ASPECT_RATIOS"]
else:
_rename(cfg, "MODEL.RPN.ANCHOR_ASPECT_RATIOS", "MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS")
_rename(cfg, "MODEL.RPN.ANCHOR_SIZES", "MODEL.ANCHOR_GENERATOR.SIZES")
del cfg["MODEL"]["RETINANET"]["ANCHOR_SIZES"]
del cfg["MODEL"]["RETINANET"]["ANCHOR_ASPECT_RATIOS"]
del cfg["MODEL"]["RETINANET"]["ANCHOR_STRIDES"]
@classmethod
def downgrade(cls, cfg: CN) -> None:
super().downgrade(cfg)
_rename(cfg, "MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS", "MODEL.RPN.ANCHOR_ASPECT_RATIOS")
_rename(cfg, "MODEL.ANCHOR_GENERATOR.SIZES", "MODEL.RPN.ANCHOR_SIZES")
cfg.MODEL.RETINANET.ANCHOR_ASPECT_RATIOS = cfg.MODEL.RPN.ANCHOR_ASPECT_RATIOS
cfg.MODEL.RETINANET.ANCHOR_SIZES = cfg.MODEL.RPN.ANCHOR_SIZES
cfg.MODEL.RETINANET.ANCHOR_STRIDES = [] # this is not used anywhere in any version
|