File size: 16,656 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Implementation of RegNet models from :paper:`dds` and :paper:`scaling`.
This code is adapted from https://github.com/facebookresearch/pycls with minimal modifications.
Some code duplication exists between RegNet and ResNets (e.g., ResStem) in order to simplify
model loading.
"""
import numpy as np
from torch import nn
from detectron2.layers import CNNBlockBase, ShapeSpec, get_norm
from .backbone import Backbone
__all__ = [
"AnyNet",
"RegNet",
"ResStem",
"SimpleStem",
"VanillaBlock",
"ResBasicBlock",
"ResBottleneckBlock",
]
def conv2d(w_in, w_out, k, *, stride=1, groups=1, bias=False):
"""Helper for building a conv2d layer."""
assert k % 2 == 1, "Only odd size kernels supported to avoid padding issues."
s, p, g, b = stride, (k - 1) // 2, groups, bias
return nn.Conv2d(w_in, w_out, k, stride=s, padding=p, groups=g, bias=b)
def gap2d():
"""Helper for building a global average pooling layer."""
return nn.AdaptiveAvgPool2d((1, 1))
def pool2d(k, *, stride=1):
"""Helper for building a pool2d layer."""
assert k % 2 == 1, "Only odd size kernels supported to avoid padding issues."
return nn.MaxPool2d(k, stride=stride, padding=(k - 1) // 2)
def init_weights(m):
"""Performs ResNet-style weight initialization."""
if isinstance(m, nn.Conv2d):
# Note that there is no bias due to BN
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(mean=0.0, std=np.sqrt(2.0 / fan_out))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1.0)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(mean=0.0, std=0.01)
m.bias.data.zero_()
class ResStem(CNNBlockBase):
"""ResNet stem for ImageNet: 7x7, BN, AF, MaxPool."""
def __init__(self, w_in, w_out, norm, activation_class):
super().__init__(w_in, w_out, 4)
self.conv = conv2d(w_in, w_out, 7, stride=2)
self.bn = get_norm(norm, w_out)
self.af = activation_class()
self.pool = pool2d(3, stride=2)
def forward(self, x):
for layer in self.children():
x = layer(x)
return x
class SimpleStem(CNNBlockBase):
"""Simple stem for ImageNet: 3x3, BN, AF."""
def __init__(self, w_in, w_out, norm, activation_class):
super().__init__(w_in, w_out, 2)
self.conv = conv2d(w_in, w_out, 3, stride=2)
self.bn = get_norm(norm, w_out)
self.af = activation_class()
def forward(self, x):
for layer in self.children():
x = layer(x)
return x
class SE(nn.Module):
"""Squeeze-and-Excitation (SE) block: AvgPool, FC, Act, FC, Sigmoid."""
def __init__(self, w_in, w_se, activation_class):
super().__init__()
self.avg_pool = gap2d()
self.f_ex = nn.Sequential(
conv2d(w_in, w_se, 1, bias=True),
activation_class(),
conv2d(w_se, w_in, 1, bias=True),
nn.Sigmoid(),
)
def forward(self, x):
return x * self.f_ex(self.avg_pool(x))
class VanillaBlock(CNNBlockBase):
"""Vanilla block: [3x3 conv, BN, Relu] x2."""
def __init__(self, w_in, w_out, stride, norm, activation_class, _params):
super().__init__(w_in, w_out, stride)
self.a = conv2d(w_in, w_out, 3, stride=stride)
self.a_bn = get_norm(norm, w_out)
self.a_af = activation_class()
self.b = conv2d(w_out, w_out, 3)
self.b_bn = get_norm(norm, w_out)
self.b_af = activation_class()
def forward(self, x):
for layer in self.children():
x = layer(x)
return x
class BasicTransform(nn.Module):
"""Basic transformation: [3x3 conv, BN, Relu] x2."""
def __init__(self, w_in, w_out, stride, norm, activation_class, _params):
super().__init__()
self.a = conv2d(w_in, w_out, 3, stride=stride)
self.a_bn = get_norm(norm, w_out)
self.a_af = activation_class()
self.b = conv2d(w_out, w_out, 3)
self.b_bn = get_norm(norm, w_out)
self.b_bn.final_bn = True
def forward(self, x):
for layer in self.children():
x = layer(x)
return x
class ResBasicBlock(CNNBlockBase):
"""Residual basic block: x + f(x), f = basic transform."""
def __init__(self, w_in, w_out, stride, norm, activation_class, params):
super().__init__(w_in, w_out, stride)
self.proj, self.bn = None, None
if (w_in != w_out) or (stride != 1):
self.proj = conv2d(w_in, w_out, 1, stride=stride)
self.bn = get_norm(norm, w_out)
self.f = BasicTransform(w_in, w_out, stride, norm, activation_class, params)
self.af = activation_class()
def forward(self, x):
x_p = self.bn(self.proj(x)) if self.proj else x
return self.af(x_p + self.f(x))
class BottleneckTransform(nn.Module):
"""Bottleneck transformation: 1x1, 3x3 [+SE], 1x1."""
def __init__(self, w_in, w_out, stride, norm, activation_class, params):
super().__init__()
w_b = int(round(w_out * params["bot_mul"]))
w_se = int(round(w_in * params["se_r"]))
groups = w_b // params["group_w"]
self.a = conv2d(w_in, w_b, 1)
self.a_bn = get_norm(norm, w_b)
self.a_af = activation_class()
self.b = conv2d(w_b, w_b, 3, stride=stride, groups=groups)
self.b_bn = get_norm(norm, w_b)
self.b_af = activation_class()
self.se = SE(w_b, w_se, activation_class) if w_se else None
self.c = conv2d(w_b, w_out, 1)
self.c_bn = get_norm(norm, w_out)
self.c_bn.final_bn = True
def forward(self, x):
for layer in self.children():
x = layer(x)
return x
class ResBottleneckBlock(CNNBlockBase):
"""Residual bottleneck block: x + f(x), f = bottleneck transform."""
def __init__(self, w_in, w_out, stride, norm, activation_class, params):
super().__init__(w_in, w_out, stride)
self.proj, self.bn = None, None
if (w_in != w_out) or (stride != 1):
self.proj = conv2d(w_in, w_out, 1, stride=stride)
self.bn = get_norm(norm, w_out)
self.f = BottleneckTransform(w_in, w_out, stride, norm, activation_class, params)
self.af = activation_class()
def forward(self, x):
x_p = self.bn(self.proj(x)) if self.proj else x
return self.af(x_p + self.f(x))
class AnyStage(nn.Module):
"""AnyNet stage (sequence of blocks w/ the same output shape)."""
def __init__(self, w_in, w_out, stride, d, block_class, norm, activation_class, params):
super().__init__()
for i in range(d):
block = block_class(w_in, w_out, stride, norm, activation_class, params)
self.add_module("b{}".format(i + 1), block)
stride, w_in = 1, w_out
def forward(self, x):
for block in self.children():
x = block(x)
return x
class AnyNet(Backbone):
"""AnyNet model. See :paper:`dds`."""
def __init__(
self,
*,
stem_class,
stem_width,
block_class,
depths,
widths,
group_widths,
strides,
bottleneck_ratios,
se_ratio,
activation_class,
freeze_at=0,
norm="BN",
out_features=None,
):
"""
Args:
stem_class (callable): A callable taking 4 arguments (channels in, channels out,
normalization, callable returning an activation function) that returns another
callable implementing the stem module.
stem_width (int): The number of output channels that the stem produces.
block_class (callable): A callable taking 6 arguments (channels in, channels out,
stride, normalization, callable returning an activation function, a dict of
block-specific parameters) that returns another callable implementing the repeated
block module.
depths (list[int]): Number of blocks in each stage.
widths (list[int]): For each stage, the number of output channels of each block.
group_widths (list[int]): For each stage, the number of channels per group in group
convolution, if the block uses group convolution.
strides (list[int]): The stride that each network stage applies to its input.
bottleneck_ratios (list[float]): For each stage, the ratio of the number of bottleneck
channels to the number of block input channels (or, equivalently, output channels),
if the block uses a bottleneck.
se_ratio (float): The ratio of the number of channels used inside the squeeze-excitation
(SE) module to it number of input channels, if SE the block uses SE.
activation_class (callable): A callable taking no arguments that returns another
callable implementing an activation function.
freeze_at (int): The number of stages at the beginning to freeze.
see :meth:`freeze` for detailed explanation.
norm (str or callable): normalization for all conv layers.
See :func:`layers.get_norm` for supported format.
out_features (list[str]): name of the layers whose outputs should
be returned in forward. RegNet's use "stem" and "s1", "s2", etc for the stages after
the stem. If None, will return the output of the last layer.
"""
super().__init__()
self.stem = stem_class(3, stem_width, norm, activation_class)
current_stride = self.stem.stride
self._out_feature_strides = {"stem": current_stride}
self._out_feature_channels = {"stem": self.stem.out_channels}
self.stages_and_names = []
prev_w = stem_width
for i, (d, w, s, b, g) in enumerate(
zip(depths, widths, strides, bottleneck_ratios, group_widths)
):
params = {"bot_mul": b, "group_w": g, "se_r": se_ratio}
stage = AnyStage(prev_w, w, s, d, block_class, norm, activation_class, params)
name = "s{}".format(i + 1)
self.add_module(name, stage)
self.stages_and_names.append((stage, name))
self._out_feature_strides[name] = current_stride = int(
current_stride * np.prod([k.stride for k in stage.children()])
)
self._out_feature_channels[name] = list(stage.children())[-1].out_channels
prev_w = w
self.apply(init_weights)
if out_features is None:
out_features = [name]
self._out_features = out_features
assert len(self._out_features)
children = [x[0] for x in self.named_children()]
for out_feature in self._out_features:
assert out_feature in children, "Available children: {} does not include {}".format(
", ".join(children), out_feature
)
self.freeze(freeze_at)
def forward(self, x):
"""
Args:
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
Returns:
dict[str->Tensor]: names and the corresponding features
"""
assert x.dim() == 4, f"Model takes an input of shape (N, C, H, W). Got {x.shape} instead!"
outputs = {}
x = self.stem(x)
if "stem" in self._out_features:
outputs["stem"] = x
for stage, name in self.stages_and_names:
x = stage(x)
if name in self._out_features:
outputs[name] = x
return outputs
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
)
for name in self._out_features
}
def freeze(self, freeze_at=0):
"""
Freeze the first several stages of the model. Commonly used in fine-tuning.
Layers that produce the same feature map spatial size are defined as one
"stage" by :paper:`FPN`.
Args:
freeze_at (int): number of stages to freeze.
`1` means freezing the stem. `2` means freezing the stem and
one residual stage, etc.
Returns:
nn.Module: this model itself
"""
if freeze_at >= 1:
self.stem.freeze()
for idx, (stage, _) in enumerate(self.stages_and_names, start=2):
if freeze_at >= idx:
for block in stage.children():
block.freeze()
return self
def adjust_block_compatibility(ws, bs, gs):
"""Adjusts the compatibility of widths, bottlenecks, and groups."""
assert len(ws) == len(bs) == len(gs)
assert all(w > 0 and b > 0 and g > 0 for w, b, g in zip(ws, bs, gs))
vs = [int(max(1, w * b)) for w, b in zip(ws, bs)]
gs = [int(min(g, v)) for g, v in zip(gs, vs)]
ms = [np.lcm(g, b) if b > 1 else g for g, b in zip(gs, bs)]
vs = [max(m, int(round(v / m) * m)) for v, m in zip(vs, ms)]
ws = [int(v / b) for v, b in zip(vs, bs)]
assert all(w * b % g == 0 for w, b, g in zip(ws, bs, gs))
return ws, bs, gs
def generate_regnet_parameters(w_a, w_0, w_m, d, q=8):
"""Generates per stage widths and depths from RegNet parameters."""
assert w_a >= 0 and w_0 > 0 and w_m > 1 and w_0 % q == 0
# Generate continuous per-block ws
ws_cont = np.arange(d) * w_a + w_0
# Generate quantized per-block ws
ks = np.round(np.log(ws_cont / w_0) / np.log(w_m))
ws_all = w_0 * np.power(w_m, ks)
ws_all = np.round(np.divide(ws_all, q)).astype(int) * q
# Generate per stage ws and ds (assumes ws_all are sorted)
ws, ds = np.unique(ws_all, return_counts=True)
# Compute number of actual stages and total possible stages
num_stages, total_stages = len(ws), ks.max() + 1
# Convert numpy arrays to lists and return
ws, ds, ws_all, ws_cont = (x.tolist() for x in (ws, ds, ws_all, ws_cont))
return ws, ds, num_stages, total_stages, ws_all, ws_cont
class RegNet(AnyNet):
"""RegNet model. See :paper:`dds`."""
def __init__(
self,
*,
stem_class,
stem_width,
block_class,
depth,
w_a,
w_0,
w_m,
group_width,
stride=2,
bottleneck_ratio=1.0,
se_ratio=0.0,
activation_class=None,
freeze_at=0,
norm="BN",
out_features=None,
):
"""
Build a RegNet from the parameterization described in :paper:`dds` Section 3.3.
Args:
See :class:`AnyNet` for arguments that are not listed here.
depth (int): Total number of blocks in the RegNet.
w_a (float): Factor by which block width would increase prior to quantizing block widths
by stage. See :paper:`dds` Section 3.3.
w_0 (int): Initial block width. See :paper:`dds` Section 3.3.
w_m (float): Parameter controlling block width quantization.
See :paper:`dds` Section 3.3.
group_width (int): Number of channels per group in group convolution, if the block uses
group convolution.
bottleneck_ratio (float): The ratio of the number of bottleneck channels to the number
of block input channels (or, equivalently, output channels), if the block uses a
bottleneck.
stride (int): The stride that each network stage applies to its input.
"""
ws, ds = generate_regnet_parameters(w_a, w_0, w_m, depth)[0:2]
ss = [stride for _ in ws]
bs = [bottleneck_ratio for _ in ws]
gs = [group_width for _ in ws]
ws, bs, gs = adjust_block_compatibility(ws, bs, gs)
def default_activation_class():
return nn.ReLU(inplace=True)
super().__init__(
stem_class=stem_class,
stem_width=stem_width,
block_class=block_class,
depths=ds,
widths=ws,
strides=ss,
group_widths=gs,
bottleneck_ratios=bs,
se_ratio=se_ratio,
activation_class=default_activation_class
if activation_class is None
else activation_class,
freeze_at=freeze_at,
norm=norm,
out_features=out_features,
)
|