File size: 5,001 Bytes
			
			b213d84  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175  | 
								# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
# ------------------------------------------------------------------------------
from __future__ import absolute_import, division, print_function
import cv2
import numpy as np
import torch
class BRG2Tensor_transform(object):
    def __call__(self, pic):
        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        if isinstance(img, torch.ByteTensor):
            return img.float()
        else:
            return img
class BGR2RGB_transform(object):
    def __call__(self, tensor):
        return tensor[[2, 1, 0], :, :]
def flip_back(output_flipped, matched_parts):
    """
    ouput_flipped: numpy.ndarray(batch_size, num_joints, height, width)
    """
    assert (
        output_flipped.ndim == 4
    ), "output_flipped should be [batch_size, num_joints, height, width]"
    output_flipped = output_flipped[:, :, :, ::-1]
    for pair in matched_parts:
        tmp = output_flipped[:, pair[0], :, :].copy()
        output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
        output_flipped[:, pair[1], :, :] = tmp
    return output_flipped
def fliplr_joints(joints, joints_vis, width, matched_parts):
    """
    flip coords
    """
    # Flip horizontal
    joints[:, 0] = width - joints[:, 0] - 1
    # Change left-right parts
    for pair in matched_parts:
        joints[pair[0], :], joints[pair[1], :] = (
            joints[pair[1], :],
            joints[pair[0], :].copy(),
        )
        joints_vis[pair[0], :], joints_vis[pair[1], :] = (
            joints_vis[pair[1], :],
            joints_vis[pair[0], :].copy(),
        )
    return joints * joints_vis, joints_vis
def transform_preds(coords, center, scale, input_size):
    target_coords = np.zeros(coords.shape)
    trans = get_affine_transform(center, scale, 0, input_size, inv=1)
    for p in range(coords.shape[0]):
        target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
    return target_coords
def transform_parsing(pred, center, scale, width, height, input_size):
    trans = get_affine_transform(center, scale, 0, input_size, inv=1)
    target_pred = cv2.warpAffine(
        pred,
        trans,
        (int(width), int(height)),  # (int(width), int(height)),
        flags=cv2.INTER_NEAREST,
        borderMode=cv2.BORDER_CONSTANT,
        borderValue=(0),
    )
    return target_pred
def transform_logits(logits, center, scale, width, height, input_size):
    trans = get_affine_transform(center, scale, 0, input_size, inv=1)
    channel = logits.shape[2]
    target_logits = []
    for i in range(channel):
        target_logit = cv2.warpAffine(
            logits[:, :, i],
            trans,
            (int(width), int(height)),  # (int(width), int(height)),
            flags=cv2.INTER_LINEAR,
            borderMode=cv2.BORDER_CONSTANT,
            borderValue=(0),
        )
        target_logits.append(target_logit)
    target_logits = np.stack(target_logits, axis=2)
    return target_logits
def get_affine_transform(
    center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0
):
    if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
        print(scale)
        scale = np.array([scale, scale])
    scale_tmp = scale
    src_w = scale_tmp[0]
    dst_w = output_size[1]
    dst_h = output_size[0]
    rot_rad = np.pi * rot / 180
    src_dir = get_dir([0, src_w * -0.5], rot_rad)
    dst_dir = np.array([0, (dst_w - 1) * -0.5], np.float32)
    src = np.zeros((3, 2), dtype=np.float32)
    dst = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    dst[0, :] = [(dst_w - 1) * 0.5, (dst_h - 1) * 0.5]
    dst[1, :] = np.array([(dst_w - 1) * 0.5, (dst_h - 1) * 0.5]) + dst_dir
    src[2:, :] = get_3rd_point(src[0, :], src[1, :])
    dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
    return trans
def affine_transform(pt, t):
    new_pt = np.array([pt[0], pt[1], 1.0]).T
    new_pt = np.dot(t, new_pt)
    return new_pt[:2]
def get_3rd_point(a, b):
    direct = a - b
    return b + np.array([-direct[1], direct[0]], dtype=np.float32)
def get_dir(src_point, rot_rad):
    sn, cs = np.sin(rot_rad), np.cos(rot_rad)
    src_result = [0, 0]
    src_result[0] = src_point[0] * cs - src_point[1] * sn
    src_result[1] = src_point[0] * sn + src_point[1] * cs
    return src_result
def crop(img, center, scale, output_size, rot=0):
    trans = get_affine_transform(center, scale, rot, output_size)
    dst_img = cv2.warpAffine(
        img, trans, (int(output_size[1]), int(output_size[0])), flags=cv2.INTER_LINEAR
    )
    return dst_img
 |