File size: 6,179 Bytes
f69cd15
eaa8689
f69cd15
1ecb321
 
 
eaa8689
5cbc9b1
6af3026
1ecb321
 
eaa8689
dbe8337
0805db6
eaa8689
 
8c2fca3
eaa8689
8c2fca3
eaa8689
8654223
f26d335
8654223
49eabb6
6803e6c
49eabb6
6803e6c
6af3026
 
 
 
 
 
5699bf9
 
b453f9d
5699bf9
5e35140
f6e997e
5e35140
 
 
 
8c2fca3
b453f9d
 
 
 
cc17840
a9ba2aa
6af3026
b453f9d
1ecb321
534e5bb
 
 
 
f69cd15
 
 
 
 
1ecb321
 
f69cd15
 
5e35140
01db67e
 
 
5e35140
f69cd15
 
1ecb321
e08a1e8
f69cd15
4db4e89
 
a9ba2aa
4db4e89
f69cd15
 
1ecb321
 
 
f69cd15
 
 
 
1ecb321
fc8d8be
 
 
f69cd15
 
 
01db67e
bd8fedc
 
 
 
 
 
 
ad30fcb
bd8fedc
 
 
 
 
 
 
ad30fcb
bd8fedc
 
 
 
 
 
 
ad30fcb
 
4311e2a
f69cd15
 
 
1e19884
f69cd15
1ecb321
01db67e
4311e2a
f69cd15
 
1e19884
cc17840
 
01db67e
fa6131f
b453f9d
7de6d0d
534e5bb
 
 
 
 
 
7de6d0d
 
fa6131f
7de6d0d
 
 
1ecb321
b453f9d
1ecb321
4db4e89
 
 
31b8014
4db4e89
 
 
 
d562784
4db4e89
68b15ec
 
e73c140
4db4e89
a9ba2aa
5900e16
4db4e89
d77e663
5cbc9b1
8654223
f69cd15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import cv2
from PIL import Image
import gradio as gr
import numpy as np
import random
import base64
import requests
import json


def start_tryon(person_img, garment_img, seed, randomize_seed):
    if person_img is None or garment_img is None:
        return None, None, "Empty image"
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes()
    encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8')
    encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes()
    encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8')

    url = "http://" + os.environ['tryon_url']
    token = os.environ['token']
    cookie = os.environ['Cookie']
    referer = os.environ['referer']

    headers = {'Content-Type': 'application/json', 'token': token, 'Cookie': cookie, 'referer': referer}
    data = {
        "clothImage": encoded_garment_img,
        "humanImage": encoded_person_img,
        "seed": seed
    }

    response = requests.post(url, headers=headers, data=json.dumps(data))
    print("response code", response.status_code)
    result_img = None
    if response.status_code == 200:
        result = response.json()['result']
        status = result['status']
        if status == "success":
            result = base64.b64decode(result['result'])
            result_np = np.frombuffer(result, np.uint8)
            result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
            result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2BGR)
            info = "Success"
        else:
            info = "Try again latter"
    else:
        print(response.text)
        info = "URL error, pleace contact the admin"

    return result_img, seed, info

MAX_SEED = 999999

example_path = os.path.join(os.path.dirname(__file__), 'assets')

garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]

human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]

css="""
#col-left {
    margin: 0 auto;
    max-width: 380px;
}
#col-mid {
    margin: 0 auto;
    max-width: 380px;
}
#col-right {
    margin: 0 auto;
    max-width: 520px;
}
#col-showcase {
    margin: 0 auto;
    max-width: 1100px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

def change_imgs(image1, image2):
    return image1, image2

with gr.Blocks(css=css) as Tryon:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id = "col-left"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                <div>
            <h2>Step 1.  Upload a person image. ⬇️</h2>
                </div>
            </div>
            """)
        with gr.Column(elem_id = "col-mid"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                <div>
            <h2>Step 2. Upload a garment image. ⬇️</h2>
                </div>
            </div>
            """)
        with gr.Column(elem_id = "col-right"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                <div>
            <h2>Step 3. Press the “Run” button to get try-on results.</h2>
                </div>
            </div>
            """)
    with gr.Row():
        with gr.Column(elem_id = "col-left"):
            imgs = gr.Image(label="Person image", sources='upload', type="numpy")
            # category = gr.Dropdown(label="Garment category", choices=['upper_body', 'lower_body', 'dresses'],  value="upper_body")
            example = gr.Examples(
                inputs=imgs,
                examples_per_page=12,
                examples=human_list_path
            )
        with gr.Column(elem_id = "col-mid"):
            garm_img = gr.Image(label="Garment image", sources='upload', type="numpy")
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=12,
                examples=garm_list_path
            )
        with gr.Column(elem_id = "col-right"):
            image_out = gr.Image(label="Result", show_share_button=False)
            with gr.Row():
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Random seed", value=True)
            with gr.Row():
                seed_used = gr.Number(label="Seed used")
                result_info = gr.Text(label="Response")
            try_button = gr.Button(value="Run", elem_id="button")


    try_button.click(fn=start_tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name='tryon')

    gr.HTML("""
    <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
        <div>
    <h2>Virtual try-on examples in pairs of person and garment images.</h2>
        </div>
    </div>
    """)
    with gr.Column(elem_id = "col-showcase"):
        show_case = gr.Examples(
            examples=[
                ["assets/examples/model2.png", "assets/examples/garment2.png", "assets/examples/result2.png"],
                ["assets/examples/model3.png", "assets/examples/garment3.png", "assets/examples/result3.png"],
                ["assets/examples/model1.png", "assets/examples/garment1.png", "assets/examples/result1.png"],
            ],
            inputs=[imgs, garm_img, image_out],
            label=None
        )

ip = requests.get('http://ifconfig.me/ip', timeout=1).text.strip()
print("ip address", ip)
Tryon.queue(max_size=10).launch()