File size: 5,718 Bytes
f69cd15
eaa8689
f69cd15
1ecb321
 
 
eaa8689
5cbc9b1
6af3026
1ecb321
 
eaa8689
0f0fc4b
2398aef
eaa8689
 
8c2fca3
eaa8689
8c2fca3
eaa8689
8654223
3ea9ed2
8654223
82b1749
5e35140
82b1749
6af3026
 
 
 
 
 
5699bf9
 
b453f9d
5699bf9
5e35140
f6e997e
5e35140
 
 
 
8c2fca3
b453f9d
 
 
 
 
6af3026
b453f9d
1ecb321
534e5bb
 
 
 
f69cd15
 
 
 
 
1ecb321
 
f69cd15
 
5e35140
01db67e
 
 
5e35140
f69cd15
 
1ecb321
e08a1e8
f69cd15
4db4e89
 
40343f0
4db4e89
f69cd15
 
1ecb321
 
 
f69cd15
 
 
 
1ecb321
fc8d8be
 
 
f69cd15
 
 
01db67e
4311e2a
f69cd15
 
 
 
 
1ecb321
01db67e
4311e2a
f69cd15
 
fe775c6
f69cd15
01db67e
fe775c6
b453f9d
 
 
fe775c6
1ecb321
f69cd15
 
 
534e5bb
 
 
 
 
 
 
 
1ecb321
b453f9d
1ecb321
4db4e89
 
 
 
 
 
 
 
 
943a705
 
 
d562784
4db4e89
2a862f6
 
4db4e89
 
5900e16
4db4e89
d77e663
aae94cd
9de3e9f
fc8d8be
5c549be
fc8d8be
9de3e9f
fc8d8be
f4f9448
fa2746c
 
 
efa1709
5cbc9b1
8654223
f69cd15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import cv2
from PIL import Image
import gradio as gr
import numpy as np
import random
import base64
import requests
import json


def start_tryon(person_img, garment_img, seed, randomize_seed):
    if person_img.all() == None or garment_img.all() == None:
        return None, None, None, "Empty image"
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes()
    encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8')
    encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes()
    encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8')

    url = "https://" + os.environ['tryon_url']
    token = os.environ['token']
    cookie = os.environ['Cookie']
    
    headers = {'Content-Type': 'application/json', 'token': token, 'Cookie': cookie}
    data = {
        "clothImage": encoded_garment_img,
        "humanImage": encoded_person_img,
        "seed": seed
    }

    response = requests.post(url, headers=headers, data=json.dumps(data))
    print("response code", response.status_code)
    result_img = None
    if response.status_code == 200:
        result = response.json()['result']
        status = result['status']
        if status == "success":
            result = base64.b64decode(result['result'])
            result_np = np.frombuffer(result, np.uint8)
            result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
            result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2BGR)
            info = "Success"
        else:
            info = "Try again latter"
    else:
        info = "URL error"

    return result_img, seed, info

MAX_SEED = 999999

example_path = os.path.join(os.path.dirname(__file__), 'assets')

garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]

human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]

css="""
#col-left {
    margin: 0 auto;
    max-width: 380px;
}
#col-mid {
    margin: 0 auto;
    max-width: 380px;
}
#col-right {
    margin: 0 auto;
    max-width: 520px;
}
#col-showcase {
    margin: 0 auto;
    max-width: 1000px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

def change_imgs(image1, image2):
    return image1, image2

with gr.Blocks(css=css) as Tryon:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id = "col-left"):
            imgs = gr.Image(label="Person image", sources='upload', type="numpy")
            # category = gr.Dropdown(label="Garment category", choices=['upper_body', 'lower_body', 'dresses'],  value="upper_body")
            example = gr.Examples(
                inputs=imgs,
                examples_per_page=10,
                examples=human_list_path
            )
        with gr.Column(elem_id = "col-mid"):
            garm_img = gr.Image(label="Garment image", sources='upload', type="numpy")
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=10,
                examples=garm_list_path)
        with gr.Column(elem_id = "col-right"):
            image_out = gr.Image(label="Output", show_share_button=False)
            with gr.Row():
                seed_used = gr.Number(label="Seed Used")
                result_info = gr.Text(label="Info")
            try_button = gr.Button(value="Try-on", elem_id="button")


    with gr.Column():
        with gr.Accordion(label="Advanced Settings", open=False):
            seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

    try_button.click(fn=start_tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name='tryon')

    gr.HTML("""
    <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
        <div>
    <h1>Show Case</h1>
        </div>
    </div>
    """)
    with gr.Column(elem_id = "col-showcase"):
        with gr.Row():
            image1  = gr.Image(label="Model", scale=1, value="assets/examples/model1.png", show_share_button=False, type="numpy", sources='upload')
            image2  = gr.Image(label="Garment", scale=1, value="assets/examples/garment1.png", show_share_button=False, type="numpy", sources='upload')
            image3  = gr.Image(label="Result", scale=1, value="assets/examples/result1.png", show_share_button=False, type="numpy", sources='upload')
        show_case = gr.Examples(
            examples=[
                ["assets/examples/model1.png", "assets/examples/garment1.png", "assets/examples/result1.png"],
                ["assets/examples/model2.png", "assets/examples/garment2.png", "assets/examples/result2.png"]
            ],
            inputs=[image1, image2, image3],
            label=None
        )


    image1.change(
        fn = change_imgs,
        inputs = [image1, image2],
        outputs = [imgs, garm_img]
    ).then(
        fn = start_tryon, 
        inputs=[image1, image2, seed, randomize_seed], 
        outputs=[image_out, seed_used, result_info]
    )


ip = requests.get('http://ifconfig.me/ip', timeout=1).text.strip()
print("ip address", ip)
Tryon.queue(max_size=10).launch()