Spaces:
Runtime error
Runtime error
File size: 8,463 Bytes
41cd9f5 83bd5e4 41cd9f5 6d8e24c 41cd9f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# Importing the required libraries
import streamlit as st
import pandas as pd
import numpy as np
import snowflake.connector
import folium
from streamlit_folium import st_folium
import pycountry_convert as pc
# Setup web page - App Title, Page Title and Page Layout
APP_TITLE = 'Plotting F1 Circuit Locations into a map using Folium'
st.set_page_config(
page_title='F1 Circuits',
layout='wide',
menu_items={'Get Help': 'https://www.linkedin.com/in/daanbakboord',
'About': "This app is powered by Snowflake, Streamlit and Folium | Developed by DaAnalytics (Daan Bakboord)"
}
)
# Create context
def create_sf_session_object():
if "snowflake_context" not in st.session_state:
# Setting up Snowflake connection
username = st.secrets["user"]
password = st.secrets["password"]
account = st.secrets["account"]
role = st.secrets["role"]
# Connect to Snowflake
ctx = snowflake.connector.connect(
user = username,
password = password,
account = account,
role = role
)
st.session_state['snowflake_context'] = ctx
else:
ctx = st.session_state['snowflake_context']
return ctx
# Get Continent based on Country
def country_convert(country_name):
try:
country_code = pc.country_name_to_country_alpha2(country_name, cn_name_format='default')
continent_name = pc.country_alpha2_to_continent_code(country_code)
return pc.convert_continent_code_to_continent_name(continent_name)
except (KeyError, TypeError):
return (country_name)
# Base color on Continent
# 'darkblue', 'white', 'lightblue', 'pink', 'gray', 'green', 'orange', 'darkred', 'black', 'blue', 'cadetblue'
#, 'lightgreen', 'purple', 'darkgreen', 'red', 'beige', 'lightred', 'darkpurple', 'lightgray'
## 'Oceania', 'Asia', 'Europe', 'North America', 'UK', 'South America', 'UAE',
## 'Africa', 'Korea'
def marker_color(continent_name):
if continent_name == 'Asia':
color = 'pink'
elif continent_name == 'Africa':
color = 'green'
elif continent_name == 'Europe':
color = 'blue'
elif continent_name == 'North America':
color = 'red'
elif continent_name == 'South America':
color = 'orange'
elif continent_name == 'Oceania':
color = 'purple'
elif continent_name == 'UK':
color = 'beige'
elif continent_name == 'UAE':
color = 'lightgreen'
elif continent_name == 'Korea':
color = 'cadetblue'
else:
color = 'grey'
return color
def load_data(cur, map_type):
global df_f1_con_circuits
global df_f1_cou_circuits
global df_qo_f1_circuits
# Connect to DEMO_DB database
cur.execute("USE DATABASE DEMO_DB")
# Connect to PRE_F1PY schema
f1_pre_schema = 'PRE_F1PY'
cur.execute("USE SCHEMA " + f1_pre_schema)
# Select Query F1 Circuits
sql_f1_circuits = """select replace(name, '"','') as name
, lat
, lng
, replace(country, '"','') as country
, replace(url, '"','') as url
from demo_db.pre_f1py.pre_f1py_circuits
"""
# Query F1 Circuits
cur.execute(sql_f1_circuits)
# Convert Query output to a DataFrame
df_qo_f1_circuits = cur.fetch_pandas_all()
# Add Continent to df_f1_circuits DataFrame
df_qo_f1_circuits['CONTINENT'] = df_qo_f1_circuits['COUNTRY'].apply(country_convert)
# Create Continents DataFrame
df_f1_con_circuits = df_qo_f1_circuits['CONTINENT'].unique()
# Create Country DataFrame
df_f1_cou_circuits = df_qo_f1_circuits['COUNTRY'].unique()
def filter_data(map_type, detail):
global df_f1_circuits
if map_type == 'World':
df_f1_circuits = df_qo_f1_circuits
elif map_type == 'Continent':
# Filter df_f1_circuits DataFrame on 'Europe' Continent
df_f1_circuits = df_qo_f1_circuits.loc[df_qo_f1_circuits['CONTINENT'] == detail]
elif map_type == 'Country':
# Filter df_f1_circuits DataFrame on Country
df_f1_circuits = df_qo_f1_circuits.loc[df_qo_f1_circuits['COUNTRY'] == detail]
# Draw the Folium Map
draw_folium_map(map_type)
def draw_folium_map(map_type):
global CircuitsMap
# Creating the Folium Map
CircuitsMap = folium.Map(location=[df_f1_circuits.LAT.mean()
, df_f1_circuits.LNG.mean()]
, zoom_start=5
, control_scale=True
, tiles='openstreetmap')
# Adding Tile Layers
folium.TileLayer('openstreetmap').add_to(CircuitsMap)
folium.TileLayer('cartodb positron').add_to(CircuitsMap)
folium.TileLayer('stamenterrain').add_to(CircuitsMap)
folium.TileLayer('stamentoner').add_to(CircuitsMap)
folium.TileLayer('stamenwatercolor').add_to(CircuitsMap)
folium.TileLayer('cartodbdark_matter').add_to(CircuitsMap)
# Other mapping code (e.g. lines, markers etc.)
folium.LayerControl().add_to(CircuitsMap)
# Add Markers to the map
if map_type == 'World':
for index, location_info in df_f1_circuits.iterrows():
folium.Marker([location_info["LAT"], location_info["LNG"]], popup='<a href=' + location_info["URL"] + ' target="_blank">' + location_info["NAME"] + '</a>', icon=folium.Icon(icon_color='white', icon="car", prefix='fa', color=marker_color(location_info["CONTINENT"]))).add_to(CircuitsMap)
elif map_type == 'Continent':
for index, location_info in df_f1_circuits.iterrows():
folium.Marker([location_info["LAT"], location_info["LNG"]], popup='<a href=' + location_info["URL"] + ' target="_blank">' + location_info["NAME"] + '</a>', icon=folium.Icon(icon_color='white', icon="car", prefix='fa', color=marker_color(location_info["CONTINENT"]))).add_to(CircuitsMap)
elif map_type == 'Country':
for index, location_info in df_f1_circuits.iterrows():
folium.Marker([location_info["LAT"], location_info["LNG"]], popup='<a href=' + location_info["URL"] + ' target="_blank">' + location_info["NAME"] + '</a>', icon=folium.Icon(icon_color='white', icon="car", prefix='fa', color='darkgreen')).add_to(CircuitsMap)
# Zoom to LAT, LONG bounds
lft_dwn = df_f1_circuits[['LAT', 'LNG']].min().values.tolist() # Left Down
top_rgt = df_f1_circuits[['LAT', 'LNG']].max().values.tolist() # Top Right
CircuitsMap.fit_bounds([lft_dwn, top_rgt])
# Main code
if __name__ == "__main__":
# Connect to Snowflake
ctx = create_sf_session_object()
cur = ctx.cursor()
# Select Map type to show
st.sidebar.title("Select Map Type")
map_type = st.sidebar.radio(
"Which map would you like to show?",
('World', 'Continent', 'Country'))
# Load Data into a DataFrame
load_data(cur, map_type)
if map_type == 'World':
detail = map_type
st.sidebar.write('You selected:', detail)
elif map_type == 'Continent':
idx = int(np.where(df_f1_con_circuits == "Europe")[0][0])
continent = st.sidebar.selectbox(
'Which continent would you like to see?',
(df_f1_con_circuits)
, index = idx)
detail = continent
st.sidebar.write('You selected:', detail)
elif map_type == 'Country':
idx = int(np.where(df_f1_cou_circuits == "France")[0][0])
country = st.sidebar.selectbox(
'Which country would you like to see?',
(df_f1_cou_circuits)
, index = idx)
detail = country
st.sidebar.write('You selected:', detail)
# Filter Data based on Map Type
filter_data(map_type, detail)
# Draw the 'World' folium Map
# draw_folium_map(map_type)
st.title('Plotting F1 Circuit Locations into a map using Folium')
if map_type == 'World':
st.subheader('Map of the ' + map_type )
else:
st.subheader('Map of ' + map_type + ' ' + detail)
# Render Folium Map in Streamlit
st_data = st_folium(CircuitsMap, width = 1250) |