File size: 3,653 Bytes
6be7f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import soundfile as sf
import torch
import fire
import torch.nn.functional as F
from torchaudio.transforms import Resample
from models.ecapa_tdnn import ECAPA_TDNN_SMALL

MODEL_LIST = ['ecapa_tdnn', 'hubert_large', 'wav2vec2_xlsr', 'unispeech_sat', "wavlm_base_plus", "wavlm_large"]


def init_model(model_name, checkpoint=None):
    if model_name == 'unispeech_sat':
        config_path = 'config/unispeech_sat.th'
        model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type='unispeech_sat', config_path=config_path)
    elif model_name == 'wavlm_base_plus':
        config_path = None
        model = ECAPA_TDNN_SMALL(feat_dim=768, feat_type='wavlm_base_plus', config_path=config_path)
    elif model_name == 'wavlm_large':
        config_path = None
        model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type='wavlm_large', config_path=config_path)
    elif model_name == 'hubert_large':
        config_path = None
        model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type='hubert_large_ll60k', config_path=config_path)
    elif model_name == 'wav2vec2_xlsr':
        config_path = None
        model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type='wav2vec2_xlsr', config_path=config_path)
    else:
        model = ECAPA_TDNN_SMALL(feat_dim=40, feat_type='fbank')

    if checkpoint is not None:
        state_dict = torch.load(checkpoint, map_location=lambda storage, loc: storage)
        model.load_state_dict(state_dict['model'], strict=False)
    return model


def verification(model_name,  wav1, wav2, use_gpu=True, checkpoint=None):

    assert model_name in MODEL_LIST, 'The model_name should be in {}'.format(MODEL_LIST)
    model = init_model(model_name, checkpoint)

    wav1, sr1 = sf.read(wav1)
    wav2, sr2 = sf.read(wav2)

    wav1 = torch.from_numpy(wav1).unsqueeze(0).float()
    wav2 = torch.from_numpy(wav2).unsqueeze(0).float()
    resample1 = Resample(orig_freq=sr1, new_freq=16000)
    resample2 = Resample(orig_freq=sr2, new_freq=16000)
    wav1 = resample1(wav1)
    wav2 = resample2(wav2)

    if use_gpu:
        model = model.cuda()
        wav1 = wav1.cuda()
        wav2 = wav2.cuda()

    model.eval()
    with torch.no_grad():
        emb1 = model(wav1)
        emb2 = model(wav2)

    sim = F.cosine_similarity(emb1, emb2)
    # print("The similarity score between two audios is {:.4f} (-1.0, 1.0).".format(sim[0].item()))
    return sim[0].item()

def verification_batch(model_name,  batch_wav1, batch_wav2, use_gpu=True, checkpoint=None):
    assert model_name in MODEL_LIST, 'The model_name should be in {}'.format(MODEL_LIST)
    model = init_model(model_name, checkpoint)


    # print(str(batch_wav1[0]))

    sr1 = sf.read(str(batch_wav1[0]))[1]
    sr2 = sf.read(str(batch_wav2[0]))[1]
    
    # print(sr1)
    
    batch_wav1 = [torch.from_numpy(sf.read(wav)[0][:50000]).unsqueeze(0).float() for wav in batch_wav1]
    batch_wav2 = [torch.from_numpy(sf.read(wav)[0][:50000]).unsqueeze(0).float() for wav in batch_wav2]

    resample1 = Resample(orig_freq=sr1, new_freq=16000)
    resample2 = Resample(orig_freq=sr2, new_freq=16000)
    


    batch_wav1 = torch.cat([resample1(wav) for wav in batch_wav1], 0)
    batch_wav2 = torch.cat([resample2(wav) for wav in batch_wav2], 0)

    # print(batch_wav1.shape)
    # print(batch_wav2.shape)

    if use_gpu:
        model = model.cuda()
        batch_wav1 = batch_wav1.cuda()
        batch_wav2 = batch_wav2.cuda()

    model.eval()
    with torch.no_grad():
        emb1 = model(batch_wav1)
        emb2 = model(batch_wav2)

    sim = F.cosine_similarity(emb1, emb2 ,dim=-1)

    return sim.cpu().numpy()
if __name__ == "__main__":
    fire.Fire(verification)