File size: 4,233 Bytes
8273cb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
from dataclasses import dataclass

import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import register_criterion
from fairseq.criterions.cross_entropy import CrossEntropyCriterion
from fairseq.dataclass import FairseqDataclass
from omegaconf import II


@dataclass
class AdaptiveSpanCriterionConfig(FairseqDataclass):
    sentence_avg: bool = II("optimization.sentence_avg")


@register_criterion("adaptive_span_loss", dataclass=AdaptiveSpanCriterionConfig)
class AdaptiveSpanCriterion(CrossEntropyCriterion):
    def __init__(self, task, sentence_avg):
        super().__init__(task, sentence_avg)

    def forward(self, model, sample, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss here is summed, different from the adaptive span code
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(**sample["net_input"])
        loss, aux_loss, avg_span, max_span = self.compute_loss(
            model, net_output, sample, reduce=reduce
        )
        sample_size = (
            sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
        )
        loss /= sample_size
        total_loss = loss + aux_loss
        sample_size = 1

        logging_output = {
            "loss": loss.data,
            "ntokens": sample["ntokens"],
            "nsentences": sample["target"].size(0),
            "sample_size": sample_size,
            "total_loss": total_loss.data,
            "avg_span": avg_span * sample_size,
            "max_span": max_span * sample_size,
        }
        return total_loss, sample_size, logging_output

    def compute_loss(self, model, net_output, sample, reduce=True):
        loss, _ = super().compute_loss(model, net_output, sample, reduce)
        aux_loss = model.get_aux_loss()
        avg_span = model.get_current_avg_span()
        max_span = model.get_current_max_span()
        return loss, aux_loss, avg_span, max_span

    @staticmethod
    def reduce_metrics(logging_outputs) -> None:
        """Aggregate logging outputs from data parallel training."""
        loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
        ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
        sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
        total_loss_sum = sum(log.get("total_loss", 0) for log in logging_outputs)
        avg_span_sum = sum(log.get("avg_span", 0) for log in logging_outputs)
        max_span_sum = sum(log.get("max_span", 0) for log in logging_outputs)

        # we divide by log(2) to convert the loss from base e to base 2
        metrics.log_scalar(
            "loss", loss_sum / sample_size / math.log(2), sample_size, round=3
        )
        metrics.log_scalar("avg_span", avg_span_sum / sample_size, sample_size, round=3)
        metrics.log_scalar("max_span", max_span_sum / sample_size, sample_size, round=3)
        # total loss contains the L1 norm on adaptive-span
        metrics.log_scalar(
            "total_loss",
            total_loss_sum / sample_size / math.log(2),
            sample_size,
            round=3,
        )
        if sample_size != ntokens:
            metrics.log_scalar(
                "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
            )
            metrics.log_derived(
                "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
            )
        else:
            metrics.log_derived(
                "ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)
            )

    @staticmethod
    def logging_outputs_can_be_summed() -> bool:
        """
        Whether the logging outputs returned by `forward` can be summed
        across workers prior to calling `reduce_metrics`. Setting this
        to True will improves distributed training speed.
        """
        return True