Spaces:
Sleeping
Sleeping
File size: 7,694 Bytes
8273cb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
class Config:
def __init__(self):
self.custom_data_dir = 'data/Dataset_Speech_Assignment'
self.for2sec_data_dir = 'data/for-2seconds'
self.batch_size = 32
self.num_workers = 4
self.num_epochs = 50
self.lr = 1e-3
self.model_checkpoint_path = 'models/Best_LA_model_for_DF.pth'
############################################################################
"""
parser.add_argument('--algo', type=int, default=3,
help='Rawboost algos discriptions. 0: No augmentation 1: LnL_convolutive_noise, 2: ISD_additive_noise, 3: SSI_additive_noise, 4: series algo (1+2+3), \
5: series algo (1+2), 6: series algo (1+3), 7: series algo(2+3), 8: parallel algo(1,2) .default=0]')
# LnL_convolutive_noise parameters
parser.add_argument('--nBands', type=int, default=5,
help='number of notch filters.The higher the number of bands, the more aggresive the distortions is.[default=5]')
parser.add_argument('--minF', type=int, default=20,
help='minimum centre frequency [Hz] of notch filter.[default=20] ')
parser.add_argument('--maxF', type=int, default=8000,
help='maximum centre frequency [Hz] (<sr/2) of notch filter.[default=8000]')
parser.add_argument('--minBW', type=int, default=100,
help='minimum width [Hz] of filter.[default=100] ')
parser.add_argument('--maxBW', type=int, default=1000,
help='maximum width [Hz] of filter.[default=1000] ')
parser.add_argument('--minCoeff', type=int, default=10,
help='minimum filter coefficients. More the filter coefficients more ideal the filter slope.[default=10]')
parser.add_argument('--maxCoeff', type=int, default=100,
help='maximum filter coefficients. More the filter coefficients more ideal the filter slope.[default=100]')
parser.add_argument('--minG', type=int, default=0,
help='minimum gain factor of linear component.[default=0]')
parser.add_argument('--maxG', type=int, default=0,
help='maximum gain factor of linear component.[default=0]')
parser.add_argument('--minBiasLinNonLin', type=int, default=5,
help=' minimum gain difference between linear and non-linear components.[default=5]')
parser.add_argument('--maxBiasLinNonLin', type=int, default=20,
help=' maximum gain difference between linear and non-linear components.[default=20]')
parser.add_argument('--N_f', type=int, default=5,
help='order of the (non-)linearity where N_f=1 refers only to linear components.[default=5]')
# ISD_additive_noise parameters
parser.add_argument('--P', type=int, default=10,
help='Maximum number of uniformly distributed samples in [%].[defaul=10]')
parser.add_argument('--g_sd', type=int, default=2,
help='gain parameters > 0. [default=2]')
# SSI_additive_noise parameters
parser.add_argument('--SNRmin', type=int, default=10,
help='Minimum SNR value for coloured additive noise.[defaul=10]')
parser.add_argument('--SNRmax', type=int, default=40,
help='Maximum SNR value for coloured additive noise.[defaul=40]')
"""
############################################################################
# conversion from agrparse to class object
self.algo = 3
self.nBands = 5
self.minF = 20
self.maxF = 8000
self.minBW = 100
self.maxBW = 1000
self.minCoeff = 10
self.maxCoeff = 100
self.minG = 0
self.maxG = 0
self.minBiasLinNonLin = 5
self.maxBiasLinNonLin = 20
self.N_f = 5
self.P = 10
self.g_sd = 2
self.SNRmin = 10
self.SNRmax = 40
#############################################################################
"""
parser.add_argument('--database_path', type=str, default='/your/path/to/data/ASVspoof_database/DF/', help='Change this to user\'s full directory address of LA database (ASVspoof2019- for training & development (used as validation), ASVspoof2021 DF for evaluation scores). We assume that all three ASVspoof 2019 LA train, LA dev and ASVspoof2021 DF eval data folders are in the same database_path directory.')
'''
% database_path/
% |- DF
% |- ASVspoof2021_DF_eval/flac
% |- ASVspoof2019_LA_train/flac
% |- ASVspoof2019_LA_dev/flac
'''
parser.add_argument('--protocols_path', type=str, default='database/', help='Change with path to user\'s DF database protocols directory address')
'''
% protocols_path/
% |- ASVspoof_LA_cm_protocols
% |- ASVspoof2021.LA.cm.eval.trl.txt
% |- ASVspoof2019.LA.cm.dev.trl.txt
% |- ASVspoof2019.LA.cm.train.trn.txt
% |- ASVspoof_DF_cm_protocols
% |- ASVspoof2021.DF.cm.eval.trl.txt
'''
# Hyperparameters
parser.add_argument('--batch_size', type=int, default=14)
parser.add_argument('--num_epochs', type=int, default=100)
parser.add_argument('--lr', type=float, default=0.000001)
parser.add_argument('--weight_decay', type=float, default=0.0001)
parser.add_argument('--loss', type=str, default='weighted_CCE')
# model
parser.add_argument('--seed', type=int, default=1234,
help='random seed (default: 1234)')
parser.add_argument('--model_path', type=str,
default=None, help='Model checkpoint')
parser.add_argument('--comment', type=str, default=None,
help='Comment to describe the saved model')
# Auxiliary arguments
parser.add_argument('--track', type=str, default='DF',choices=['LA', 'PA','DF'], help='LA/PA/DF')
parser.add_argument('--eval_output', type=str, default=None,
help='Path to save the evaluation result')
parser.add_argument('--eval', action='store_true', default=False,
help='eval mode')
parser.add_argument('--is_eval', action='store_true', default=False,help='eval database')
parser.add_argument('--eval_part', type=int, default=0)
# backend options
parser.add_argument('--cudnn-deterministic-toggle', action='store_false', \
default=True,
help='use cudnn-deterministic? (default true)')
parser.add_argument('--cudnn-benchmark-toggle', action='store_true', \
default=False,
help='use cudnn-benchmark? (default false)')
"""
self.weight_decay = 0.0001
self.loss = 'weighted_CCE'
self.seed = 1234
self.model_path = "models/LA_model.pth"
self.comment = None
self.track = 'DF'
self.eval_output = None
self.eval = False
self.is_eval = False
self.eval_part = 0
self.cudnn_deterministic_toggle = False
self.cudnn_benchmark_toggle = False
self.wandb_config = {
'project': 'Speech Assignment 3',
'run_name': 'LA_model',
}
|