Spaces:
Sleeping
Sleeping
File size: 2,556 Bytes
4fa9f3e 1a74fec 4fa9f3e b97e015 4fa9f3e b97e015 1a74fec b97e015 76e1a38 1a74fec b97e015 1a74fec b97e015 1a74fec 76e1a38 1a74fec 76e1a38 1a74fec 76e1a38 1a74fec 76e1a38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
title: DmxPerplexity
emoji: 🌖
colorFrom: purple
colorTo: pink
sdk: gradio
sdk_version: 4.7.1
app_file: app.py
pinned: false
license: apache-2.0
tags:
- evaluate
- metric
description: >-
Perplexity metric implemented by d-Matrix.
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence, calculated with exponent base `e`.
For more information, see https://huggingface.co/docs/transformers/perplexity
---
# Metric Card for Perplexity
## Metric Description
Perplexity metric implemented by d-Matrix.
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence, calculated with exponent base `e`.
For more information, see https://huggingface.co/docs/transformers/perplexity
## How to Use
At minimum, this metric requires the model and references as inputs.
```python
>>> import evaluate
>>> perplexity = evaluate.load("dmx_perplexity", module_type="metric")
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
>>> results = perplexity.compute(model='distilgpt2',references=input_texts)
>>> print(results)
{'loss': 4.993086338043213, 'perplexity': 147.390625}
```
### Inputs
- **model** (`Union`[`str`,`AutoModelForCausalLM`]): model used for calculating Perplexity
- **references** (`list` of `str`): input text, each separate text snippet is one list entry.
- **device** (`str`): device to run on, defaults to 'cuda' when available.
- **max_length** (`int`): maximum sequence length, defaults to 2048.
### Output Values
- **loss** (`float`): the loss of the model predictions compared to the reference
- **perplexity**(`float`): measures the uncertainty of a model predicting text. Model performance is better when perplexity is lower.
Output Example(s):
```python
{'accuracy': 1.0}
```
This metric outputs a dictionary, containing the loss and perplexity score.
### Examples
```python
>>> import evaluate
>>> from datasets import load_dataset
>>> perplexity = evaluate.load("dmx_perplexity", module_type="metric")
>>> input_texts = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")["text"][:10]
>>> results = perplexity.compute(model='distilgpt2',references=input_texts)
>>> print(list(results.keys()))
['loss', 'perplexity']
>>> print(results['loss'])
3.8299286365509033
>>> print(results['perplexity'])
46.05925369262695
```
## Citation(s)
https://huggingface.co/docs/transformers/perplexity |