File size: 5,904 Bytes
eb0678a
6a6199b
eb0678a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc32390
 
eb0678a
 
cc32390
eb0678a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6274907
eb0678a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6993849
eb0678a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
import gradio as gr
from flash_vstream.serve.demo import Chat, title_markdown, block_css
from flash_vstream.constants import *
from flash_vstream.conversation import conv_templates, Conversation
import os
from PIL import Image
import tempfile
import imageio
import shutil


model_path = "IVGSZ/Flash-VStream-7b"
load_8bit = False
load_4bit = False

def save_image_to_local(image):
    filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.jpg')
    image = Image.open(image)
    image.save(filename)
    return filename


def save_video_to_local(video_path):
    filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4')
    shutil.copyfile(video_path, filename)
    return filename


def generate(video, textbox_in, first_run, state, state_, images_tensor):

    flag = 1
    if not textbox_in:
        if len(state_.messages) > 0:
            textbox_in = state_.messages[-1][1]
            state_.messages.pop(-1)
            flag = 0
        else:
            return "Please enter instruction"

    video = video if video else "none"

    if type(state) is not Conversation:
        state = conv_templates[conv_mode].copy()
        state_ = conv_templates[conv_mode].copy()
        images_tensor = []

    first_run = False if len(state.messages) > 0 else True

    text_en_in = textbox_in.replace("picture", "image")

    image_processor = handler.image_processor

    if os.path.exists(video):
        video_tensor = handler._get_rawvideo_dec(video, image_processor, max_frames=MAX_IMAGE_LENGTH)
        images_tensor = image_processor(video_tensor, return_tensors='pt')['pixel_values'].to(handler.model.device, dtype=torch.float16)
        print("video_tensor", video_tensor.shape)

    if os.path.exists(video):
        text_en_in = DEFAULT_IMAGE_TOKEN + '\n' + text_en_in

    text_en_out, state_ = handler.generate(images_tensor, text_en_in, first_run=first_run, state=state_)
    state_.messages[-1] = (state_.roles[1], text_en_out)

    text_en_out = text_en_out.split('#')[0]
    textbox_out = text_en_out

    show_images = ""
    if os.path.exists(video):
        filename = save_video_to_local(video)
        show_images += f'<video controls playsinline width="500" style="display: inline-block;"  src="./file={filename}"></video>'

    if flag:
        state.append_message(state.roles[0], textbox_in + "\n" + show_images)
    state.append_message(state.roles[1], textbox_out)

    return (state, state_, state.to_gradio_chatbot(), False, gr.update(value=None, interactive=True), images_tensor, gr.update(value=None, interactive=True))


def regenerate(state, state_):
    state.messages.pop(-1)
    state_.messages.pop(-1)
    if len(state.messages) > 0:
        return state, state_, state.to_gradio_chatbot(), False
    return (state, state_, state.to_gradio_chatbot(), True)


def clear_history(state, state_):
    state = conv_templates[conv_mode].copy()
    state_ = conv_templates[conv_mode].copy()
    return (gr.update(value=None, interactive=True), \
        gr.update(value=None, interactive=True),\
        True, state, state_, state.to_gradio_chatbot(), [])


conv_mode = "vicuna_v1"
handler = Chat(model_path, conv_mode=conv_mode, load_4bit=load_4bit, load_8bit=load_8bit)
if not os.path.exists("temp"):
    os.makedirs("temp")

print(torch.cuda.memory_allocated())
print(torch.cuda.max_memory_allocated())

with gr.Blocks(title='Flash-VStream', theme=gr.themes.Soft(), css=block_css) as demo:
    gr.Markdown(title_markdown)
    state = gr.State()
    state_ = gr.State()
    first_run = gr.State()
    images_tensor = gr.State()

    with gr.Row():
        with gr.Column(scale=3):
            video = gr.Video(label="Input Video")

        with gr.Column(scale=7):
            chatbot = gr.Chatbot(label="Flash-VStream", bubble_full_width=True).style(height=700)
            with gr.Row():
                with gr.Column(scale=8):
                    textbox = gr.Textbox(show_label=False,
                                         placeholder="Enter text and press Send",
                                         container=False)
                with gr.Column(scale=2, min_width=50):
                    submit_btn = gr.Button(value="Send", variant="primary", interactive=True)

    with gr.Row(visible=True) as button_row:
        regenerate_btn = gr.Button(value="🔄  Regenerate", interactive=True)
        clear_btn = gr.Button(value="🗑️  Clear history", interactive=True)
   
    cur_dir = os.path.dirname(os.path.abspath(__file__))
        
    with gr.Row():
        gr.Examples(
            examples=[
                [
                    f"{cur_dir}/examples/video1.mp4",
                    "Describe the video briefly.",
                ]
            ],
            inputs=[video, textbox],
        )

        gr.Examples(
            examples=[
                [
                    f"{cur_dir}/examples/video4.mp4",
                    "What is the boy doing?",
                ]
            ],
            inputs=[video, textbox],
        )

        gr.Examples(
            examples=[
                [
                    f"{cur_dir}/examples/video5.mp4",
                    "Why is this video funny?",
                ]
            ],
            inputs=[video, textbox],
        )

    submit_btn.click(generate, [video, textbox, first_run, state, state_, images_tensor], [state, state_, chatbot, first_run, textbox, images_tensor, video])

    regenerate_btn.click(regenerate, [state, state_], [state, state_, chatbot, first_run]).then(
        generate, [video, textbox, first_run, state, state_, images_tensor], [state, state_, chatbot, first_run, textbox, images_tensor, video])

    clear_btn.click(clear_history, [state, state_],
                    [video, textbox, first_run, state, state_, chatbot, images_tensor])


# app = gr.mount_gradio_app(app, demo, path="/")
demo.launch()