File size: 16,319 Bytes
e58a127
b8336b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e58a127
b8336b2
 
 
 
 
 
 
 
 
 
 
 
 
 
5399123
b8336b2
 
 
4a639bf
 
 
 
 
 
 
b8336b2
 
 
 
 
5399123
 
b8336b2
 
 
 
 
 
 
 
 
 
 
 
5399123
b8336b2
 
 
 
 
 
 
 
5399123
b8336b2
 
 
 
 
 
5399123
b8336b2
 
 
 
 
 
 
 
 
2cc6f4b
b8336b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cc6f4b
b8336b2
 
 
 
 
2cc6f4b
 
b8336b2
 
 
d5f2ccb
b8336b2
 
 
 
5399123
b8336b2
2cc6f4b
b8336b2
 
 
 
 
 
2cc6f4b
 
b8336b2
d5f2ccb
 
 
 
 
 
b8336b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f2ccb
b8336b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f2ccb
 
b8336b2
 
 
 
 
5399123
b8336b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5399123
 
 
 
 
d5f2ccb
 
5399123
d5f2ccb
5399123
 
b8336b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e58a127
 
b8336b2
 
4a639bf
b8336b2
 
 
 
d5f2ccb
b8336b2
 
 
 
 
 
 
d5f2ccb
b8336b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f2ccb
 
b8336b2
 
d5f2ccb
b8336b2
 
d5f2ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8336b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import spaces
import os
import shutil
import gradio as gr
import torch
import numpy as np
from PIL import Image
import torchaudio
from einops import rearrange
import psutil
import humanize
from transformers import (
    AutoProcessor, 
    AutoModelForVision2Seq,
    pipeline
)
from huggingface_hub import scan_cache_dir
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
import random

CACHE_ROOT = '/tmp'
os.environ['HF_HOME'] = CACHE_ROOT
os.environ['HUGGINGFACE_HUB_CACHE'] = os.path.join(CACHE_ROOT, 'hub')
os.environ['XDG_CACHE_HOME'] = os.path.join(CACHE_ROOT, 'cache')

# Global model variables
kosmos_model = None
kosmos_processor = None
zephyr_pipe = None
audio_model = None
audio_config = None

def initialize_models():
    check_disk_space()
    global kosmos_model, kosmos_processor, zephyr_pipe, audio_model, audio_config
    try:
        print("Loading Kosmos-2...")
        kosmos_model = AutoModelForVision2Seq.from_pretrained(
            "microsoft/kosmos-2-patch14-224",
            device_map="auto",
            torch_dtype=torch.float16
            )
        kosmos_processor = AutoProcessor.from_pretrained(
            "microsoft/kosmos-2-patch14-224")
        if torch.cuda.is_available():
            kosmos_model = kosmos_model.to("cuda")
    except Exception as e:
        print(f"Error loading Kosmos-2: {e}")
        raise

    check_disk_space()
    try:
        print("Loading Zephyr...")
        zephyr_pipe = pipeline(
            "text-generation",
            model="HuggingFaceH4/zephyr-7b-beta",
            torch_dtype=torch.bfloat16,
            device_map="auto"
        )
    except Exception as e:
        print(f"Error loading Zephyr: {e}")
        raise

    check_disk_space()
    try:
        print("Loading Stable Audio...")
        audio_model, audio_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
        if torch.cuda.is_available():
            audio_model = audio_model.to("cuda")
    except Exception as e:
        print(f"Error loading Stable Audio: {e}")
        raise
    check_disk_space()

def get_caption(image_in):
    if not image_in:
        raise gr.Error("Please provide an image")
        
    try:
        check_disk_space()
        # Convert image to PIL if needed
        if isinstance(image_in, str):
            image = Image.open(image_in)
        elif isinstance(image_in, np.ndarray):
            image = Image.fromarray(image_in)
        
        if image.mode != "RGB":
            image = image.convert("RGB")
            
        prompt = "<grounding>Describe the visual elements in detail with rich adjectives and without names:"
        inputs = kosmos_processor(text=prompt, images=image, return_tensors="pt")
        
        device = next(kosmos_model.parameters()).device
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        with torch.no_grad():
            generated_ids = kosmos_model.generate(
                pixel_values=inputs["pixel_values"],
                input_ids=inputs["input_ids"],
                attention_mask=inputs["attention_mask"],
                image_embeds_position_mask=inputs["image_embeds_position_mask"],
                max_new_tokens=128,
            )
            
        generated_text = kosmos_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
        processed_text, _ = kosmos_processor.post_process_generation(generated_text)
        
        # Clean up output
        for prefix in ["Describe the visual elements in detail with rich adjectives and without names", "An image of", "<grounding>"]:
            processed_text = processed_text.replace(prefix, "").strip()
            
        return processed_text
        
    except Exception as e:
        # raise gr.Error(f"Image caption generation failed: {str(e)}")
        return "A curved titanium facade reflecting sunlight with flowing organic forms" # fallback sample

# Continuing from previous code...

def get_musical_prompt(user_prompt):
    if not user_prompt:
        raise gr.Error("No image caption provided")
    
    try:
        check_disk_space()
        standard_sys = """
You are a musician AI who specializes in translating architectural space viusal descriptions into musical prompts. Your job is to create concise musical prompts that capture the essence of it.
Consider these elements in your composition:
- Spatial Experience: expansive/intimate spaces, layered forms, acoustical qualities
- Materials & Textures: metallic, glass, concrete translated into instrumental textures
- Musical Elements: blend of classical structure and jazz improvisation
- Orchestration: symphonic layers, solo instruments, or ensemble variations
- Soundscapes: environmental depth and spatial audio qualities
Do not mention Gehry, Disney, Bilbao directly. Be poetic, creative, melodic, harmonious, rhythmic. 
Respond immediately with a single musical prompt. No explanation, just the musical description. 

Examples:
Input: "A curved titanium facade reflecting sunlight with flowing organic forms"
Output: "Fluid jazz piano with shimmering orchestral textures, metallic percussion accents, and expansive reverb creating architectural depth"

Input: "A geometric glass atrium with intersecting angular planes"
Output: "Crystalline minimalist composition with layered string harmonies and precise rhythmic structures, emphasizing spatial transparency"
"""
        instruction = f"""
<|system|>
{standard_sys}</s>
<|user|>
{user_prompt}</s>
"""
        
        outputs = zephyr_pipe(
            instruction.strip(),
            max_new_tokens=256,
            do_sample=True,
            temperature=0.75,
            top_k=50,
            top_p=0.92
        )
        
        musical_prompt = outputs[0]["generated_text"]
        
        # Clean system message and tokens
        cleaned_prompt = musical_prompt.replace("<|system|>", "").replace("</s>", "").replace("<|user|>", "").replace("<|assistant|>", "").replace("Output:", "")
        
        lines = cleaned_prompt.split('\n')
        relevant_lines = [line.strip() for line in lines 
                         if line.strip() and 
                         not line.startswith('-') and
                         not line.startswith('Example') and
                         not line.startswith('Instructions') and
                         not line.startswith('Consider') and
                         not line.startswith('Incorporate')]
        
        if relevant_lines:
            final_prompt = relevant_lines[-1].strip()
            if len(final_prompt) >= 10:
                return final_prompt
                
        raise ValueError("Could not extract valid musical prompt")

    except Exception as e:
        print(f"Error in get_musical_prompt: {str(e)}")
        final_prompt = "Ambient orchestral composition with piano and strings, creating a contemplative atmosphere"
        return final_prompt

def get_stable_audio_open(prompt, seconds_total=47, steps=100, cfg_scale=7):
    try:
        torch.cuda.empty_cache()  # Clear GPU memory before generation

        check_disk_space()
        device = "cuda" if torch.cuda.is_available() else "cpu"
        sample_rate = audio_config["sample_rate"]
        sample_size = audio_config["sample_size"]

        # Set up conditioning
        conditioning = [{
            "prompt": prompt,
            "seconds_start": 0,
            "seconds_total": seconds_total
        }]

        # Generate audio
        output = generate_diffusion_cond(
            audio_model,
            steps=steps,
            cfg_scale=cfg_scale,
            conditioning=conditioning,
            sample_size=sample_size,
            sigma_min=0.3,
            sigma_max=500,
            sampler_type="dpmpp-3m-sde",
            device=device
        )

        output = rearrange(output, "b d n -> d (b n)")
        output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()

        # Save to temporary file
        output_path = os.path.join(CACHE_ROOT, f"output_{os.urandom(8).hex()}.wav")
        torchaudio.save(output_path, output, sample_rate)
        
        return output_path
        
    except Exception as e:
        torch.cuda.empty_cache()  # Clear GPU memory on error
        raise gr.Error(f"Music generation failed: {str(e)}")

def check_api():
    try:
        if all([kosmos_model, kosmos_processor, zephyr_pipe, audio_model, audio_config]):
            return "Orchestra ready. 🎹 πŸ‘οΈ 🎼"
        return "Orchestra is tuning..."
    except Exception:
        return "Orchestra is tuning..."

# Rest of the utility functions remain the same
def get_storage_info():
    disk_usage = psutil.disk_usage('/tmp')
    used = humanize.naturalsize(disk_usage.used)
    total = humanize.naturalsize(disk_usage.total)
    percent = disk_usage.percent
    return f"Storage: {used}/{total} ({percent}% used)"

def check_disk_space(min_gb=10):
    """Check if there's enough disk space (default: 10GB)"""
    disk_usage = psutil.disk_usage('/')
    gb_free = disk_usage.free / (1024 * 1024 * 1024)
    if gb_free < min_gb:
        print("Disk space GB free: " + str(int(gb_free)))
        raise RuntimeError(f"Low disk space: {int(gb_free)}GB free, need {min_gb}GB")
    else:
        print("Disk space GB free: " + str(int(gb_free)))
    return True

def smart_cleanup():
    try:
        cache_info = scan_cache_dir()
        seen_models = {}
        
        for repo in cache_info.repos:
            model_id = repo.repo_id
            if model_id not in seen_models:
                seen_models[model_id] = []
            seen_models[model_id].append(repo)
        
        for model_id, repos in seen_models.items():
            if len(repos) > 1:
                repos.sort(key=lambda x: x.last_modified, reverse=True)
                for repo in repos[1:]:
                    shutil.rmtree(repo.repo_path)
                    print(f"Removed duplicate cache for {model_id}")
            
        return get_storage_info()
        
    except Exception as e:
        print(f"Error during cleanup: {e}")
        return "Cleanup error occurred"

def get_image_examples():
    image_dir = "images"
    image_extensions = ['.jpg', '.jpeg', '.png']
    examples = []
    
    if not os.path.exists(image_dir):
        print(f"Warning: Image directory '{image_dir}' not found")
        return []
    
    for filename in os.listdir(image_dir):
        if any(filename.lower().endswith(ext) for ext in image_extensions):
            examples.append([os.path.join(image_dir, filename)])

    random.shuffle(examples)
    return examples

@spaces.GPU(enable_queue=True)
def infer(image_in, api_status):
    if image_in is None:
        raise gr.Error("Please provide an image of architecture")

    if api_status == "Orchestra is tuning. Please refresh the webpage.":
        raise gr.Error("The model is still tuning, please try again later")
    
    try:
        gr.Info("🎭 Finding a poetry in form and light...")
        user_prompt = get_caption(image_in)
        
        gr.Info("🎼 Weaving into melody...")
        musical_prompt = get_musical_prompt(user_prompt)

        gr.Info("🎻 Breathing life into notes...")
        music_o = get_stable_audio_open(musical_prompt)
        
        torch.cuda.empty_cache()  # Clear GPU memory after generation
        return gr.update(value=musical_prompt, interactive=True), gr.update(visible=True), music_o
    except Exception as e:
        torch.cuda.empty_cache()
        raise gr.Error(f"Generation failed: {str(e)}")

def retry(caption):
    musical_prompt = caption
    gr.Info("🎹 Refreshing with a new vibe...")
    music_o = get_stable_audio_open(musical_prompt)
    return music_o

# UI Definition
demo_title = "Musical Toy for Frank"
description = "A humble attempt to hear Architecture through Music"

css = """
#col-container {
    margin: 0 auto;
    max-width: 980px;
    text-align: left;
}
#inspi-prompt textarea {
    font-size: 20px;
    line-height: 24px;
    font-weight: 600;
}
"""

with gr.Blocks(css=css) as demo:
    # UI layout remains exactly the same as in your original code
    with gr.Column(elem_id="col-container"):
        gr.HTML(f"""
        <h2 style="text-align: center;">{demo_title}</h2>
        <p style="text-align: center;">{description}</p>
        """)
        with gr.Row():
            with gr.Column():
                image_in = gr.Image(
                    label="Inspire us:",
                    type="filepath",
                    elem_id="image-in"
                )
                gr.Examples(
                    examples=get_image_examples(),
                    fn=infer,
                    inputs=[image_in],
                    examples_per_page=5,
                    label="β™ͺ  β™ͺ ..."
                )
                submit_btn = gr.Button("Listen to it...")
            with gr.Column():
                check_status = gr.Textbox(
                    label="Status",
                    interactive=False,
                    value=check_api()
                )
                caption = gr.Textbox(
                    label="Explanation & Inspiration...",
                    interactive=False,
                    elem_id="inspi-prompt"
                )
                retry_btn = gr.Button("🎲", visible=False)
                result = gr.Audio(
                    label="Music",
                    autoplay = True
                )

        # Credits section
        gr.HTML("""
        <div style="margin-top: 40px; padding: 20px; border-top: 1px solid #ddd;">
            <h3 style="text-align: center;">Credits & Acknowledgments</h3>
            
            <h4>Architecture</h4>
            <p>Frank O Gehry, Gehry Partners LLP and Gehry Tech team for pushing the boundaries of form and space for humanity.</p>
            
            <h4>Technologies</h4>
            <ul>
                <li>Music Generation: <a href="https://huggingface.co/spaces/harmonai/stable-audio-public">Stable Audio Open</a> by STABILITY AI LTD</li>
                <li>Image Understanding: <a href="https://huggingface.co/microsoft/kosmos-2">Kosmos-2</a> by Microsoft</li>
                <li>Language Model: Zephyr by Hugging Face</li>
                <li>Affordable Online Hosting Platform & Computational Resources by Hugging Face</li>
            </ul>
            <h4>Contributors</h4>
            <ul>
                <li>Architects, Engineers & Consultants who bring these visions to life</li>
                <li>Contractor teams, craftspeople, and workers who materialize these dreams</li>
                <li>Photographers who capture and share these architectural moments to general public online</li>
                <li>Musicians and composers whose work inspires our audio training behind the scenes for generations</li>
            </ul>
            <p style="text-align: center; margin-top: 20px; font-size: 0.9em;">
                This project stands on the shoulders of countless individuals who contribute to the intersection of architecture, technology, and broader arts.
                <br>Special thanks to all the open-source communities and researchers making these technologies accessible.
            </p>
        </div>
        """)

    # Event handlers
    demo.load(
        fn=check_api,
        outputs=check_status,
    )

    retry_btn.click(
        fn=retry,
        inputs=[caption],
        outputs=[result]
    )
    
    submit_btn.click(
        fn=infer,
        inputs=[
            image_in,
            check_status
        ],
        outputs=[
            caption,
            retry_btn,
            result
        ]
    )

    with gr.Column():
        storage_info = gr.Textbox(label="Storage Info", value=get_storage_info())
        cleanup_btn = gr.Button("Smart Cleanup")
    
    cleanup_btn.click(
        fn=smart_cleanup,
        outputs=storage_info
    )

if __name__ == "__main__":
    print("Initializing models...")
    initialize_models()
    print("Models initialized successfully")
    
    demo.queue(max_size=16).launch(
        show_api=False,
        show_error=True,
        server_name="0.0.0.0",
        server_port=7860,
    )