Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,911 Bytes
b8336b2 5399123 b8336b2 4a639bf b8336b2 5399123 b8336b2 5399123 b8336b2 5399123 b8336b2 5399123 b8336b2 5399123 b8336b2 5399123 b8336b2 5399123 78a01f3 5399123 78a01f3 5399123 b8336b2 4a639bf b8336b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import os
import shutil
import gradio as gr
import torch
import numpy as np
from PIL import Image
import torchaudio
from einops import rearrange
import psutil
import humanize
import spaces
from transformers import (
AutoProcessor,
AutoModelForVision2Seq,
pipeline
)
from huggingface_hub import scan_cache_dir
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
# Cache setup code remains same
CACHE_ROOT = '/tmp'
os.environ['HF_HOME'] = CACHE_ROOT
os.environ['HUGGINGFACE_HUB_CACHE'] = os.path.join(CACHE_ROOT, 'hub')
os.environ['XDG_CACHE_HOME'] = os.path.join(CACHE_ROOT, 'cache')
# Global model variables
kosmos_model = None
kosmos_processor = None
zephyr_pipe = None
audio_model = None
audio_config = None
def initialize_models():
check_disk_space()
global kosmos_model, kosmos_processor, zephyr_pipe, audio_model, audio_config
try:
print("Loading Kosmos-2...")
kosmos_model = AutoModelForVision2Seq.from_pretrained(
"microsoft/kosmos-2-patch14-224",
device_map="auto",
torch_dtype=torch.float16
)
kosmos_processor = AutoProcessor.from_pretrained(
"microsoft/kosmos-2-patch14-224")
if torch.cuda.is_available():
kosmos_model = kosmos_model.to("cuda")
except Exception as e:
print(f"Error loading Kosmos-2: {e}")
raise
check_disk_space()
try:
print("Loading Zephyr...")
zephyr_pipe = pipeline(
"text-generation",
model="HuggingFaceH4/zephyr-7b-beta",
torch_dtype=torch.bfloat16,
device_map="auto"
)
except Exception as e:
print(f"Error loading Zephyr: {e}")
raise
check_disk_space()
try:
print("Loading Stable Audio...")
audio_model, audio_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
if torch.cuda.is_available():
audio_model = audio_model.to("cuda")
except Exception as e:
print(f"Error loading Stable Audio: {e}")
raise
check_disk_space()
def get_caption(image_in):
if not image_in:
raise gr.Error("Please provide an image")
try:
check_disk_space()
# Convert image to PIL if needed
if isinstance(image_in, str):
image = Image.open(image_in)
elif isinstance(image_in, np.ndarray):
image = Image.fromarray(image_in)
if image.mode != "RGB":
image = image.convert("RGB")
prompt = "<grounding>Describe this image in detail without names:"
inputs = kosmos_processor(text=prompt, images=image, return_tensors="pt")
device = next(kosmos_model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
generated_ids = kosmos_model.generate(
pixel_values=inputs["pixel_values"],
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
image_embeds_position_mask=inputs["image_embeds_position_mask"],
max_new_tokens=128,
)
generated_text = kosmos_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
processed_text, _ = kosmos_processor.post_process_generation(generated_text)
# Clean up output
for prefix in ["Describe this image in detail without names", "An image of", "<grounding>"]:
processed_text = processed_text.replace(prefix, "").strip()
return processed_text
except Exception as e:
raise gr.Error(f"Image caption generation failed: {str(e)}")
# Continuing from previous code...
def get_musical_prompt(user_prompt, chosen_model):
if not user_prompt:
raise gr.Error("No image caption provided")
try:
check_disk_space()
standard_sys = """
You are a musician AI who specializes in translating architectural spaces into musical experiences. Your job is to create concise musical descriptions that capture the essence of architectural photographs.
Consider these elements in your composition:
- Spatial Experience: expansive/intimate spaces, layered forms, acoustical qualities
- Materials & Textures: metallic, glass, concrete translated into instrumental textures
- Musical Elements: blend of classical structure and jazz improvisation
- Orchestration: symphonic layers, solo instruments, or ensemble variations
- Soundscapes: environmental depth and spatial audio qualities
Respond immediately with a single musical prompt. No explanation, just the musical description.
"""
instruction = f"""
<|system|>
{standard_sys}</s>
<|user|>
{user_prompt}</s>
"""
outputs = zephyr_pipe(
instruction.strip(),
max_new_tokens=256,
do_sample=True,
temperature=0.75,
top_k=50,
top_p=0.92
)
musical_prompt = outputs[0]["generated_text"]
# Clean system message and tokens
cleaned_prompt = musical_prompt.replace("<|system|>", "").replace("</s>", "").replace("<|user|>", "").replace("<|assistant|>", "")
lines = cleaned_prompt.split('\n')
relevant_lines = [line.strip() for line in lines
if line.strip() and
not line.startswith('-') and
not line.startswith('Example') and
not line.startswith('Instructions') and
not line.startswith('Consider') and
not line.startswith('Incorporate')]
if relevant_lines:
final_prompt = relevant_lines[-1].strip()
if len(final_prompt) >= 10:
return final_prompt
raise ValueError("Could not extract valid musical prompt")
except Exception as e:
print(f"Error in get_musical_prompt: {str(e)}")
return "Ambient orchestral composition with piano and strings, creating a contemplative atmosphere"
def get_stable_audio_open(prompt, seconds_total=47, steps=100, cfg_scale=7):
try:
torch.cuda.empty_cache() # Clear GPU memory before generation
check_disk_space()
device = "cuda" if torch.cuda.is_available() else "cpu"
sample_rate = audio_config["sample_rate"]
sample_size = audio_config["sample_size"]
# Set up conditioning
conditioning = [{
"prompt": prompt,
"seconds_start": 0,
"seconds_total": seconds_total
}]
# Generate audio
output = generate_diffusion_cond(
audio_model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=0.3,
sigma_max=500,
sampler_type="dpmpp-3m-sde",
device=device
)
output = rearrange(output, "b d n -> d (b n)")
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
# Save to temporary file
output_path = os.path.join(CACHE_ROOT, f"output_{os.urandom(8).hex()}.wav")
torchaudio.save(output_path, output, sample_rate)
return output_path
except Exception as e:
torch.cuda.empty_cache() # Clear GPU memory on error
raise gr.Error(f"Music generation failed: {str(e)}")
def check_api():
try:
if all([kosmos_model, kosmos_processor, zephyr_pipe, audio_model, audio_config]):
return "Orchestra ready. πΉ ποΈ πΌ"
return "Orchestra is tuning..."
except Exception:
return "Orchestra is tuning..."
# Rest of the utility functions remain the same
def get_storage_info():
disk_usage = psutil.disk_usage('/tmp')
used = humanize.naturalsize(disk_usage.used)
total = humanize.naturalsize(disk_usage.total)
percent = disk_usage.percent
return f"Storage: {used}/{total} ({percent}% used)"
def check_disk_space(min_gb=10):
"""Check if there's enough disk space (default: 10GB)"""
disk_usage = psutil.disk_usage('/')
gb_free = disk_usage.free / (1024 * 1024 * 1024)
if gb_free < min_gb:
print("Disk space GB free" + str(gb_free))
raise RuntimeError(f"Low disk space: {gb_free:.1f}GB free, need {min_gb}GB")
else:
print("Disk space GB free" + str(gb_free))
return True
def smart_cleanup():
try:
cache_info = scan_cache_dir()
seen_models = {}
for repo in cache_info.repos:
model_id = repo.repo_id
if model_id not in seen_models:
seen_models[model_id] = []
seen_models[model_id].append(repo)
for model_id, repos in seen_models.items():
if len(repos) > 1:
repos.sort(key=lambda x: x.last_modified, reverse=True)
for repo in repos[1:]:
shutil.rmtree(repo.repo_path)
print(f"Removed duplicate cache for {model_id}")
return get_storage_info()
except Exception as e:
print(f"Error during cleanup: {e}")
return "Cleanup error occurred"
def get_image_examples():
image_dir = "images"
image_extensions = ['.jpg', '.jpeg', '.png']
examples = []
if not os.path.exists(image_dir):
print(f"Warning: Image directory '{image_dir}' not found")
return []
for filename in os.listdir(image_dir):
if any(filename.lower().endswith(ext) for ext in image_extensions):
examples.append([os.path.join(image_dir, filename)])
return examples
@spaces.GPU(enable_queue=True)
def infer(image_in, api_status):
if image_in is None:
raise gr.Error("Please provide an image of architecture")
if api_status == "Orchestra is tuning...":
raise gr.Error("The model is still tuning, please try again later")
try:
gr.Info("π Finding a poetry in form and light...")
user_prompt = get_caption(image_in)
gr.Info("πΌ Weaving into melody...")
musical_prompt = get_musical_prompt(user_prompt, "Stable Audio Open")
gr.Info("π» Breathing life into notes...")
music_o = get_stable_audio_open(musical_prompt)
torch.cuda.empty_cache() # Clear GPU memory after generation
return gr.update(value=musical_prompt, interactive=True), gr.update(visible=True), music_o
except Exception as e:
torch.cuda.empty_cache()
raise gr.Error(f"Generation failed: {str(e)}")
def retry(caption):
musical_prompt = caption
gr.Info("πΉ Refreshing with a new vibe...")
music_o = get_stable_audio_open(musical_prompt)
return music_o
# UI Definition
demo_title = "Musical Toy for Frank"
description = "A humble attempt to hear Architecture through Music"
css = """
#col-container {
margin: 0 auto;
max-width: 980px;
text-align: left;
}
#inspi-prompt textarea {
font-size: 20px;
line-height: 24px;
font-weight: 600;
}
"""
with gr.Blocks(css=css) as demo:
# UI layout remains exactly the same as in your original code
with gr.Column(elem_id="col-container"):
gr.HTML(f"""
<h2 style="text-align: center;">{demo_title}</h2>
<p style="text-align: center;">{description}</p>
""")
with gr.Row():
with gr.Column():
image_in = gr.Image(
label="Inspire us:",
type="filepath",
elem_id="image-in"
)
gr.Examples(
examples=get_image_examples(),
fn=infer,
inputs=[image_in],
examples_per_page=5,
label="βͺ βͺ ..."
)
submit_btn = gr.Button("Listen to it...")
with gr.Column():
check_status = gr.Textbox(
label="Status",
interactive=False,
value=check_api()
)
caption = gr.Textbox(
label="Explanation & Inspiration...",
interactive=False,
elem_id="inspi-prompt"
)
retry_btn = gr.Button("π²", visible=False)
result = gr.Audio(
label="Music"
)
# Credits section remains the same
gr.HTML("""
<div style="margin-top: 40px; padding: 20px; border-top: 1px solid #ddd;">
<!-- Your existing credits HTML -->
</div>
""")
# Event handlers
demo.load(
fn=check_api,
outputs=check_status,
)
retry_btn.click(
fn=retry,
inputs=[caption],
outputs=[result]
)
submit_btn.click(
fn=infer,
inputs=[
image_in,
check_status
],
outputs=[
caption,
retry_btn,
result
]
)
with gr.Column():
storage_info = gr.Textbox(label="Storage Info", value=get_storage_info())
cleanup_btn = gr.Button("Smart Cleanup")
cleanup_btn.click(
fn=smart_cleanup,
outputs=storage_info
)
if __name__ == "__main__":
print("Initializing models...")
initialize_models()
print("Models initialized successfully")
demo.queue(max_size=16).launch(
show_api=False,
show_error=True,
server_name="0.0.0.0",
server_port=7860,
) |