File size: 5,240 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# --------------------------------------------------------
# Dummy optimizer for visualizing pairs
# --------------------------------------------------------
import numpy as np
import torch
import torch.nn as nn
import cv2

from dust3r.cloud_opt_flow.base_opt import BasePCOptimizer
from dust3r.utils.geometry import inv, geotrf, depthmap_to_absolute_camera_coordinates
from dust3r.cloud_opt_flow.commons import edge_str
from dust3r.post_process import estimate_focal_knowing_depth


class PairViewer (BasePCOptimizer):
    """
    This a Dummy Optimizer.
    To use only when the goal is to visualize the results for a pair of images (with is_symmetrized)
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        assert self.is_symmetrized and self.n_edges == 2
        self.has_im_poses = True

        # compute all parameters directly from raw input
        self.focals = []
        self.pp = []
        rel_poses = []
        confs = []
        for i in range(self.n_imgs):
            conf = float(self.conf_i[edge_str(i, 1-i)].mean() * self.conf_j[edge_str(i, 1-i)].mean())
            if self.verbose:
                print(f'  - {conf=:.3} for edge {i}-{1-i}')
            confs.append(conf)

            H, W = self.imshapes[i]
            pts3d = self.pred_i[edge_str(i, 1-i)]
            pp = torch.tensor((W/2, H/2))
            focal = float(estimate_focal_knowing_depth(pts3d[None], pp, focal_mode='weiszfeld'))
            self.focals.append(focal)
            self.pp.append(pp)

            # estimate the pose of pts1 in image 2
            pixels = np.mgrid[:W, :H].T.astype(np.float32)
            pts3d = self.pred_j[edge_str(1-i, i)].numpy()
            assert pts3d.shape[:2] == (H, W)
            msk = self.get_masks()[i].numpy()
            K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)])

            try:
                res = cv2.solvePnPRansac(pts3d[msk], pixels[msk], K, None,
                                         iterationsCount=100, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP)
                success, R, T, inliers = res
                assert success

                R = cv2.Rodrigues(R)[0]  # world to cam
                pose = inv(np.r_[np.c_[R, T], [(0, 0, 0, 1)]])  # cam to world
            except:
                pose = np.eye(4)
            rel_poses.append(torch.from_numpy(pose.astype(np.float32)))

        # let's use the pair with the most confidence
        if confs[0] > confs[1]:
            # ptcloud is expressed in camera1
            self.im_poses = [torch.eye(4), rel_poses[1]]  # I, cam2-to-cam1
            self.depth = [self.pred_i['0_1'][..., 2], geotrf(inv(rel_poses[1]), self.pred_j['0_1'])[..., 2]]
        else:
            # ptcloud is expressed in camera2
            self.im_poses = [rel_poses[0], torch.eye(4)]  # I, cam1-to-cam2
            self.depth = [geotrf(inv(rel_poses[0]), self.pred_j['1_0'])[..., 2], self.pred_i['1_0'][..., 2]]

        self.im_poses = nn.Parameter(torch.stack(self.im_poses, dim=0), requires_grad=False)
        self.focals = nn.Parameter(torch.tensor(self.focals), requires_grad=False)
        self.pp = nn.Parameter(torch.stack(self.pp, dim=0), requires_grad=False)
        self.depth = nn.ParameterList(self.depth)
        for p in self.parameters():
            p.requires_grad = False

    def _set_depthmap(self, idx, depth, force=False):
        if self.verbose:
            print('_set_depthmap is ignored in PairViewer')
        return

    def get_depthmaps(self, raw=False):
        depth = [d.to(self.device) for d in self.depth]
        return depth

    def _set_focal(self, idx, focal, force=False):
        self.focals[idx] = focal

    def get_focals(self):
        return self.focals

    def get_known_focal_mask(self):
        return torch.tensor([not (p.requires_grad) for p in self.focals])

    def get_principal_points(self):
        return self.pp

    def get_intrinsics(self):
        focals = self.get_focals()
        pps = self.get_principal_points()
        K = torch.zeros((len(focals), 3, 3), device=self.device)
        for i in range(len(focals)):
            K[i, 0, 0] = K[i, 1, 1] = focals[i]
            K[i, :2, 2] = pps[i]
            K[i, 2, 2] = 1
        return K

    def get_im_poses(self):
        return self.im_poses

    def depth_to_pts3d(self, raw_pts=False):
        pts3d = []
        if raw_pts:
            im_poses = self.get_im_poses()
            if im_poses[0].sum() == 4:
                pts3d.append(self.pred_i['0_1'])
                pts3d.append(self.pred_j['0_1'])
            else:
                pts3d.append(self.pred_j['1_0'])
                pts3d.append(self.pred_i['1_0'])
        else:
            for d, intrinsics, im_pose in zip(self.depth, self.get_intrinsics(), self.get_im_poses()):
                pts, _ = depthmap_to_absolute_camera_coordinates(d.cpu().numpy(),
                                                                intrinsics.cpu().numpy(),
                                                                im_pose.cpu().numpy())
                pts3d.append(torch.from_numpy(pts).to(device=self.device))
        return pts3d

    def forward(self):
        return float('nan')