File size: 5,266 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torch.nn.functional as F
from utils.utils import bilinear_sampler, coords_grid

try:
    import alt_cuda_corr
except:
    # alt_cuda_corr is not compiled
    pass

class CorrBlock2:
    def __init__(self, fmap1, fmap2, args):
        self.num_levels = args.corr_levels
        self.radius = args.corr_radius
        self.args = args
        self.corr_pyramid = []
        # all pairs correlation
        for i in range(self.num_levels):
            corr = CorrBlock2.corr(fmap1, fmap2, 1)
            batch, h1, w1, dim, h2, w2 = corr.shape
            corr = corr.reshape(batch*h1*w1, dim, h2, w2)
            fmap2 = F.interpolate(fmap2, scale_factor=0.5, mode='bilinear', align_corners=False)
            self.corr_pyramid.append(corr)

    def __call__(self, coords, dilation=None):
        r = self.radius
        coords = coords.permute(0, 2, 3, 1)
        batch, h1, w1, _ = coords.shape

        if dilation is None:
            dilation = torch.ones(batch, 1, h1, w1, device=coords.device)

        # print(dilation.max(), dilation.mean(), dilation.min())
        out_pyramid = []
        for i in range(self.num_levels):
            corr = self.corr_pyramid[i]
            device = coords.device
            dx = torch.linspace(-r, r, 2*r+1, device=device)
            dy = torch.linspace(-r, r, 2*r+1, device=device)
            delta = torch.stack(torch.meshgrid(dy, dx), axis=-1)
            delta_lvl = delta.view(1, 2*r+1, 2*r+1, 2)
            delta_lvl = delta_lvl * dilation.view(batch * h1 * w1, 1, 1, 1)
            centroid_lvl = coords.reshape(batch*h1*w1, 1, 1, 2) / 2**i
            coords_lvl = centroid_lvl + delta_lvl
            corr = bilinear_sampler(corr, coords_lvl)
            corr = corr.view(batch, h1, w1, -1)
            out_pyramid.append(corr)

        out = torch.cat(out_pyramid, dim=-1)
        out = out.permute(0, 3, 1, 2).contiguous().float()  
        return out

    @staticmethod
    def corr(fmap1, fmap2, num_head):
        batch, dim, h1, w1 = fmap1.shape
        h2, w2 = fmap2.shape[2:]
        fmap1 = fmap1.view(batch, num_head, dim // num_head, h1*w1)
        fmap2 = fmap2.view(batch, num_head, dim // num_head, h2*w2) 
        corr = fmap1.transpose(2, 3) @ fmap2
        corr = corr.reshape(batch, num_head, h1, w1, h2, w2).permute(0, 2, 3, 1, 4, 5)
        return corr  / torch.sqrt(torch.tensor(dim).float())

class CorrBlock:
    def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
        self.num_levels = num_levels
        self.radius = radius
        self.corr_pyramid = []

        # all pairs correlation
        corr = CorrBlock.corr(fmap1, fmap2)

        batch, h1, w1, dim, h2, w2 = corr.shape
        corr = corr.reshape(batch*h1*w1, dim, h2, w2)
        
        self.corr_pyramid.append(corr)
        for i in range(self.num_levels-1):
            corr = F.avg_pool2d(corr, 2, stride=2)
            self.corr_pyramid.append(corr)

    def __call__(self, coords):
        r = self.radius
        coords = coords.permute(0, 2, 3, 1)
        batch, h1, w1, _ = coords.shape

        out_pyramid = []
        for i in range(self.num_levels):
            corr = self.corr_pyramid[i]
            dx = torch.linspace(-r, r, 2*r+1)
            dy = torch.linspace(-r, r, 2*r+1)
            delta = torch.stack(torch.meshgrid(dy, dx), axis=-1).to(coords.device)

            centroid_lvl = coords.reshape(batch*h1*w1, 1, 1, 2) / 2**i
            delta_lvl = delta.view(1, 2*r+1, 2*r+1, 2)
            coords_lvl = centroid_lvl + delta_lvl

            corr = bilinear_sampler(corr, coords_lvl)
            corr = corr.view(batch, h1, w1, -1)
            out_pyramid.append(corr)

        out = torch.cat(out_pyramid, dim=-1)
        return out.permute(0, 3, 1, 2).contiguous().float()

    @staticmethod
    def corr(fmap1, fmap2):
        batch, dim, ht, wd = fmap1.shape
        fmap1 = fmap1.view(batch, dim, ht*wd)
        fmap2 = fmap2.view(batch, dim, ht*wd) 
        
        corr = torch.matmul(fmap1.transpose(1,2), fmap2)
        corr = corr.view(batch, ht, wd, 1, ht, wd)
        return corr  / torch.sqrt(torch.tensor(dim).float())


class AlternateCorrBlock:
    def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
        self.num_levels = num_levels
        self.radius = radius

        self.pyramid = [(fmap1, fmap2)]
        for i in range(self.num_levels):
            fmap1 = F.avg_pool2d(fmap1, 2, stride=2)
            fmap2 = F.avg_pool2d(fmap2, 2, stride=2)
            self.pyramid.append((fmap1, fmap2))

    def __call__(self, coords):
        coords = coords.permute(0, 2, 3, 1)
        B, H, W, _ = coords.shape
        dim = self.pyramid[0][0].shape[1]

        corr_list = []
        for i in range(self.num_levels):
            r = self.radius
            fmap1_i = self.pyramid[0][0].permute(0, 2, 3, 1).contiguous()
            fmap2_i = self.pyramid[i][1].permute(0, 2, 3, 1).contiguous()

            coords_i = (coords / 2**i).reshape(B, 1, H, W, 2).contiguous()
            corr, = alt_cuda_corr.forward(fmap1_i, fmap2_i, coords_i, r)
            corr_list.append(corr.squeeze(1))

        corr = torch.stack(corr_list, dim=1)
        corr = corr.reshape(B, -1, H, W)
        return corr / torch.sqrt(torch.tensor(dim).float())