File size: 9,640 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).

# --------------------------------------------------------
# Main test function
# --------------------------------------------------------

import os
import argparse
import pickle
from PIL import Image
import numpy as np
from tqdm import tqdm

import torch
from torch.utils.data import DataLoader

import utils.misc as misc
from models.croco_downstream import CroCoDownstreamBinocular
from models.head_downstream import PixelwiseTaskWithDPT

from stereoflow.criterion import *
from stereoflow.datasets_stereo import get_test_datasets_stereo
from stereoflow.datasets_flow import get_test_datasets_flow
from stereoflow.engine import tiled_pred

from stereoflow.datasets_stereo import vis_disparity
from stereoflow.datasets_flow import flowToColor

def get_args_parser():
    parser = argparse.ArgumentParser('Test CroCo models on stereo/flow', add_help=False)
    # important argument 
    parser.add_argument('--model', required=True, type=str, help='Path to the model to evaluate')
    parser.add_argument('--dataset', required=True, type=str, help="test dataset (there can be multiple dataset separated by a +)")
    # tiling 
    parser.add_argument('--tile_conf_mode', type=str, default='', help='Weights for the tiling aggregation based on confidence (empty means use the formula from the loaded checkpoint')
    parser.add_argument('--tile_overlap', type=float, default=0.7, help='overlap between tiles')
    # save (it will automatically go to <model_path>_<dataset_str>/<tile_str>_<save>)
    parser.add_argument('--save', type=str, nargs='+', default=[], 
                        help='what to save: \
                              metrics (pickle file), \
                              pred (raw prediction save as torch tensor), \
                              visu (visualization in png of each prediction), \
                              err10 (visualization in png of the error clamp at 10 for each prediction), \
                              submission (submission file)')
    # other (no impact)
    parser.add_argument('--num_workers', default=4, type=int)
    return parser
    
    
def _load_model_and_criterion(model_path, do_load_metrics, device):
    print('loading model from', model_path)
    assert os.path.isfile(model_path)
    ckpt = torch.load(model_path, 'cpu')
    
    ckpt_args = ckpt['args']
    task = ckpt_args.task
    tile_conf_mode = ckpt_args.tile_conf_mode
    num_channels = {'stereo': 1, 'flow': 2}[task]
    with_conf =  eval(ckpt_args.criterion).with_conf
    if with_conf: num_channels += 1
    print('head: PixelwiseTaskWithDPT()')
    head = PixelwiseTaskWithDPT()
    head.num_channels = num_channels
    print('croco_args:', ckpt_args.croco_args)
    model = CroCoDownstreamBinocular(head, **ckpt_args.croco_args)
    msg = model.load_state_dict(ckpt['model'], strict=True)
    model.eval()
    model = model.to(device)
    
    if do_load_metrics:
        if task=='stereo':
            metrics = StereoDatasetMetrics().to(device)
        else:
            metrics = FlowDatasetMetrics().to(device)
    else:
        metrics = None
    
    return model, metrics, ckpt_args.crop, with_conf, task, tile_conf_mode
    
    
def _save_batch(pred, gt, pairnames, dataset, task, save, outdir, time, submission_dir=None):

    for i in range(len(pairnames)):
        
        pairname = eval(pairnames[i]) if pairnames[i].startswith('(') else pairnames[i] # unbatch pairname 
        fname = os.path.join(outdir, dataset.pairname_to_str(pairname))
        os.makedirs(os.path.dirname(fname), exist_ok=True)
        
        predi = pred[i,...]
        if gt is not None: gti = gt[i,...]
        
        if 'pred' in save:
            torch.save(predi.squeeze(0).cpu(), fname+'_pred.pth')
            
        if 'visu' in save:
            if task=='stereo':
                disparity = predi.permute((1,2,0)).squeeze(2).cpu().numpy()
                m,M = None
                if gt is not None:
                    mask = torch.isfinite(gti)
                    m = gt[mask].min()
                    M = gt[mask].max()
                img_disparity = vis_disparity(disparity, m=m, M=M)
                Image.fromarray(img_disparity).save(fname+'_pred.png')
            else:
                # normalize flowToColor according to the maxnorm of gt (or prediction if not available)
                flowNorm = torch.sqrt(torch.sum( (gti if gt is not None else predi)**2, dim=0)).max().item()
                imgflow = flowToColor(predi.permute((1,2,0)).cpu().numpy(), maxflow=flowNorm)
                Image.fromarray(imgflow).save(fname+'_pred.png')
                
        if 'err10' in save:
            assert gt is not None
            L2err = torch.sqrt(torch.sum( (gti-predi)**2, dim=0))
            valid = torch.isfinite(gti[0,:,:])
            L2err[~valid] = 0.0
            L2err = torch.clamp(L2err, max=10.0)
            red = (L2err*255.0/10.0).to(dtype=torch.uint8)[:,:,None]
            zer = torch.zeros_like(red)
            imgerr = torch.cat( (red,zer,zer), dim=2).cpu().numpy()
            Image.fromarray(imgerr).save(fname+'_err10.png')
            
        if 'submission' in save:
            assert submission_dir is not None
            predi_np = predi.permute(1,2,0).squeeze(2).cpu().numpy() # transform into HxWx2 for flow or HxW for stereo
            dataset.submission_save_pairname(pairname, predi_np, submission_dir, time)

def main(args):
        
    # load the pretrained model and metrics
    device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
    model, metrics, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion(args.model, 'metrics' in args.save, device)
    if args.tile_conf_mode=='': args.tile_conf_mode = tile_conf_mode
    
    # load the datasets 
    datasets = (get_test_datasets_stereo if task=='stereo' else get_test_datasets_flow)(args.dataset)
    dataloaders = [DataLoader(dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, pin_memory=True, drop_last=False) for dataset in datasets]    
       
    # run
    for i,dataloader in enumerate(dataloaders):
        dataset = datasets[i]
        dstr = args.dataset.split('+')[i]
        
        outdir = args.model+'_'+misc.filename(dstr)
        if 'metrics' in args.save and len(args.save)==1:
            fname = os.path.join(outdir, f'conf_{args.tile_conf_mode}_overlap_{args.tile_overlap}.pkl')
            if os.path.isfile(fname) and len(args.save)==1:
                print('  metrics already compute in '+fname)
                with open(fname, 'rb') as fid:
                    results = pickle.load(fid)
                for k,v in results.items():
                    print('{:s}: {:.3f}'.format(k, v))
                continue
                        
        if 'submission' in args.save:
            dirname = f'submission_conf_{args.tile_conf_mode}_overlap_{args.tile_overlap}'
            submission_dir = os.path.join(outdir, dirname)
        else:
            submission_dir = None
           
        print('')
        print('saving {:s} in {:s}'.format('+'.join(args.save), outdir))
        print(repr(dataset))
    
        if metrics is not None: 
            metrics.reset()
                
        for data_iter_step, (image1, image2, gt, pairnames) in enumerate(tqdm(dataloader)):
        
            do_flip = (task=='stereo' and dstr.startswith('Spring') and any("right" in p for p in pairnames)) # we flip the images and will flip the prediction after as we assume img1 is on the left 
            
            image1 = image1.to(device, non_blocking=True)
            image2 = image2.to(device, non_blocking=True)
            gt = gt.to(device, non_blocking=True) if gt.numel()>0 else None # special case for test time
            if do_flip:
                assert all("right" in p for p in pairnames) 
                image1 = image1.flip(dims=[3]) # this is already the right frame, let's flip it
                image2 = image2.flip(dims=[3])
                gt = gt # that is ok
                        
            with torch.inference_mode():
                pred, _, _, time = tiled_pred(model, None, image1, image2, None if dataset.name=='Spring' else gt, conf_mode=args.tile_conf_mode, overlap=args.tile_overlap, crop=cropsize, with_conf=with_conf, return_time=True)

                if do_flip:
                    pred = pred.flip(dims=[3])
                
                if metrics is not None: 
                    metrics.add_batch(pred, gt)
                
                if any(k in args.save for k in ['pred','visu','err10','submission']):
                    _save_batch(pred, gt, pairnames, dataset, task, args.save, outdir, time, submission_dir=submission_dir)                
            

        # print 
        if metrics is not None: 
            results = metrics.get_results()
            for k,v in results.items():
                print('{:s}: {:.3f}'.format(k, v))
                
        # save if needed
        if 'metrics' in args.save:
            os.makedirs(os.path.dirname(fname), exist_ok=True)
            with open(fname, 'wb') as fid:
                pickle.dump(results, fid)
            print('metrics saved in', fname)
            
        # finalize submission if needed
        if 'submission' in args.save:
            dataset.finalize_submission(submission_dir)
                
        
            
if __name__ == '__main__':
    args = get_args_parser()
    args = args.parse_args()
    main(args)