File size: 12,542 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Initialization functions for global alignment
# --------------------------------------------------------
from functools import lru_cache

import numpy as np
import scipy.sparse as sp
import torch
import cv2
import roma
from tqdm import tqdm

from dust3r.utils.geometry import geotrf, inv, get_med_dist_between_poses
from dust3r.post_process import estimate_focal_knowing_depth
from dust3r.viz import to_numpy

from dust3r.cloud_opt.commons import edge_str, i_j_ij, compute_edge_scores

def cache(user_function, /):
    'Simple lightweight unbounded cache.  Sometimes called "memoize".'
    return lru_cache(maxsize=None)(user_function)

@torch.no_grad()
def init_from_known_poses(self, niter_PnP=10, min_conf_thr=3):
    device = self.device

    # indices of known poses
    nkp, known_poses_msk, known_poses = get_known_poses(self)
    assert nkp == self.n_imgs, 'not all poses are known'

    # get all focals
    nkf, _, im_focals = get_known_focals(self)
    assert nkf == self.n_imgs
    im_pp = self.get_principal_points()

    best_depthmaps = {}
    # init all pairwise poses
    for e, (i, j) in enumerate(tqdm(self.edges, disable=not self.verbose)):
        i_j = edge_str(i, j)

        # find relative pose for this pair
        P1 = torch.eye(4, device=device)
        msk = self.conf_i[i_j] > min(min_conf_thr, self.conf_i[i_j].min() - 0.1)
        _, P2 = fast_pnp(self.pred_j[i_j], float(im_focals[i].mean()),
                         pp=im_pp[i], msk=msk, device=device, niter_PnP=niter_PnP)

        # align the two predicted camera with the two gt cameras
        s, R, T = align_multiple_poses(torch.stack((P1, P2)), known_poses[[i, j]])
        # normally we have known_poses[i] ~= sRT_to_4x4(s,R,T,device) @ P1
        # and geotrf(sRT_to_4x4(1,R,T,device), s*P2[:3,3])
        self._set_pose(self.pw_poses, e, R, T, scale=s)

        # remember if this is a good depthmap
        score = float(self.conf_i[i_j].mean())
        if score > best_depthmaps.get(i, (0,))[0]:
            best_depthmaps[i] = score, i_j, s

    # init all image poses
    for n in range(self.n_imgs):
        assert known_poses_msk[n]
        _, i_j, scale = best_depthmaps[n]
        depth = self.pred_i[i_j][:, :, 2]
        self._set_depthmap(n, depth * scale)


@torch.no_grad()
def init_minimum_spanning_tree(self, init_priors, **kw):
    """ Init all camera poses (image-wise and pairwise poses) given
        an initial set of pairwise estimations.
    """
    device = self.device
    pts3d, _, im_focals, im_poses = minimum_spanning_tree(self.imshapes, self.edges,
                                                          self.pred_i, self.pred_j, self.conf_i, self.conf_j, self.im_conf, self.min_conf_thr,
                                                          device, has_im_poses=self.has_im_poses, verbose=self.verbose, init_priors = init_priors,
                                                          **kw)

    return init_from_pts3d(self, pts3d, im_focals, im_poses)


def init_from_pts3d(self, pts3d, im_focals, im_poses):
    # init poses
    nkp, known_poses_msk, known_poses = get_known_poses(self)
    if nkp == 1:
        raise NotImplementedError("Would be simpler to just align everything afterwards on the single known pose")
    elif nkp > 1:
        # global rigid SE3 alignment
        s, R, T = align_multiple_poses(im_poses[known_poses_msk], known_poses[known_poses_msk])
        trf = sRT_to_4x4(s, R, T, device=known_poses.device)

        # rotate everything
        im_poses = trf @ im_poses
        im_poses[:, :3, :3] /= s  # undo scaling on the rotation part
        for img_pts3d in pts3d:
            img_pts3d[:] = geotrf(trf, img_pts3d)

    # set all pairwise poses
    for e, (i, j) in enumerate(self.edges):
        i_j = edge_str(i, j)
        # compute transform that goes from cam to world
        s, R, T = rigid_points_registration(self.pred_i[i_j], pts3d[i], conf=self.conf_i[i_j])
        self._set_pose(self.pw_poses, e, R, T, scale=s)

    # take into account the scale normalization
    s_factor = self.get_pw_norm_scale_factor()
    im_poses[:, :3, 3] *= s_factor  # apply downscaling factor
    for img_pts3d in pts3d:
        img_pts3d *= s_factor

    # init all image poses
    if self.has_im_poses:
        for i in range(self.n_imgs):
            cam2world = im_poses[i]

            if not self.if_use_mono:
                depth = geotrf(inv(cam2world), pts3d[i])[..., 2]
                self._set_depthmap(i, depth)

            self._set_pose(self.im_poses, i, cam2world)
            if im_focals[i] is not None:
                self._set_focal(i, im_focals[i])

    if self.verbose:
        print(' init loss =', float(self()))


def minimum_spanning_tree(imshapes, edges, pred_i, pred_j, conf_i, conf_j, im_conf, min_conf_thr,
                          device, init_priors, has_im_poses=True, niter_PnP=10, verbose=True):
    n_imgs = len(imshapes)
    sparse_graph = -dict_to_sparse_graph(compute_edge_scores(map(i_j_ij, edges), conf_i, conf_j))
    msp = sp.csgraph.minimum_spanning_tree(sparse_graph).tocoo()

    # temp variable to store 3d points
    pts3d = [None] * len(imshapes)

    todo = sorted(zip(-msp.data, msp.row, msp.col))  # sorted edges
    im_poses = [None] * n_imgs
    im_focals = [None] * n_imgs

    # init with specific edge
    score, i, j = None, None, None
    if init_priors is None:
        score, i, j = todo.pop()
    else:
        while todo:
            score, i, j = todo.pop()
            if i == 0 or j == 0:
                break
            else:
                todo.insert(0, (score, i, j))


    if verbose:
        print(f' init edge ({i}*,{j}*) {score=}')
    i_j = edge_str(i, j)


    pts3d[i] = pred_i[i_j].clone()
    pts3d[j] = pred_j[i_j].clone()
    done = {i, j}
    if has_im_poses:
        if init_priors is None:
            im_poses[i] = torch.eye(4, device=device)
            im_focals[i] = estimate_focal(pred_i[i_j])
        else:

            init_keypose = np.array(init_priors[0]).astype(np.float32)
            init_keyfocal = init_priors[2][0]

            if i == 0:
                im_poses[i] = torch.from_numpy(init_keypose).to(device)
                im_focals[i] = float(init_keyfocal)

                pts3d[i] = geotrf(im_poses[i], pts3d[i])
                pts3d[j] = geotrf(im_poses[i], pts3d[j])
            elif j == 0:
                im_poses[j] = torch.from_numpy(init_keypose).to(device)
                im_focals[j] = float(init_keyfocal)

                j_i = edge_str(j, i)
                pts3d[i] = geotrf(im_poses[j], pred_j[j_i].clone())
                pts3d[j] = geotrf(im_poses[j], pred_i[j_i].clone())




    # set initial pointcloud based on pairwise graph
    msp_edges = [(i, j)]
    while todo:
        # each time, predict the next one
        score, i, j = todo.pop()

        if im_focals[i] is None:
            im_focals[i] = estimate_focal(pred_i[i_j])

        if i in done:
            if verbose:
                print(f' init edge ({i},{j}*) {score=}')
            assert j not in done
            # align pred[i] with pts3d[i], and then set j accordingly
            i_j = edge_str(i, j)
            s, R, T = rigid_points_registration(pred_i[i_j], pts3d[i], conf=conf_i[i_j])
            trf = sRT_to_4x4(s, R, T, device)
            pts3d[j] = geotrf(trf, pred_j[i_j])
            done.add(j)
            msp_edges.append((i, j))

            if has_im_poses and im_poses[i] is None:
                im_poses[i] = sRT_to_4x4(1, R, T, device)

        elif j in done:
            if verbose:
                print(f' init edge ({i}*,{j}) {score=}')
            assert i not in done
            i_j = edge_str(i, j)
            s, R, T = rigid_points_registration(pred_j[i_j], pts3d[j], conf=conf_j[i_j])
            trf = sRT_to_4x4(s, R, T, device)
            pts3d[i] = geotrf(trf, pred_i[i_j])
            done.add(i)
            msp_edges.append((i, j))

            if has_im_poses and im_poses[i] is None:
                im_poses[i] = sRT_to_4x4(1, R, T, device)
        else:
            # let's try again later
            todo.insert(0, (score, i, j))



    if has_im_poses:
        # complete all missing informations
        pair_scores = list(sparse_graph.values())  # already negative scores: less is best
        edges_from_best_to_worse = np.array(list(sparse_graph.keys()))[np.argsort(pair_scores)]
        for i, j in edges_from_best_to_worse.tolist():
            if im_focals[i] is None:
                im_focals[i] = estimate_focal(pred_i[edge_str(i, j)])

        for i in range(n_imgs):
            if im_poses[i] is None:
                msk = im_conf[i] > min_conf_thr
                res = fast_pnp(pts3d[i], im_focals[i], msk=msk, device=device, niter_PnP=niter_PnP)
                if res:
                    im_focals[i], im_poses[i] = res
            if im_poses[i] is None:
                im_poses[i] = torch.eye(4, device=device)
        im_poses = torch.stack(im_poses)
    else:
        im_poses = im_focals = None

    return pts3d, msp_edges, im_focals, im_poses


def dict_to_sparse_graph(dic):
    n_imgs = max(max(e) for e in dic) + 1
    res = sp.dok_array((n_imgs, n_imgs))
    for edge, value in dic.items():
        res[edge] = value
    return res


def rigid_points_registration(pts1, pts2, conf):
    R, T, s = roma.rigid_points_registration(
        pts1.reshape(-1, 3), pts2.reshape(-1, 3), weights=conf.ravel(), compute_scaling=True)
    return s, R, T  # return un-scaled (R, T)


def sRT_to_4x4(scale, R, T, device):
    trf = torch.eye(4, device=device)
    trf[:3, :3] = R * scale
    trf[:3, 3] = T.ravel()  # doesn't need scaling
    return trf


def estimate_focal(pts3d_i, pp=None):
    if pp is None:
        H, W, THREE = pts3d_i.shape
        assert THREE == 3
        pp = torch.tensor((W/2, H/2), device=pts3d_i.device)
    focal = estimate_focal_knowing_depth(pts3d_i.unsqueeze(0), pp.unsqueeze(0), focal_mode='weiszfeld').ravel()
    return float(focal)


@cache
def pixel_grid(H, W):
    return np.mgrid[:W, :H].T.astype(np.float32)


def fast_pnp(pts3d, focal, msk, device, pp=None, niter_PnP=10):
    # extract camera poses and focals with RANSAC-PnP
    if msk.sum() < 4:
        return None  # we need at least 4 points for PnP
    pts3d, msk = map(to_numpy, (pts3d, msk))

    H, W, THREE = pts3d.shape
    assert THREE == 3
    pixels = pixel_grid(H, W)

    if focal is None:
        S = max(W, H)
        tentative_focals = np.geomspace(S/2, S*3, 21)
    else:
        tentative_focals = [focal]

    if pp is None:
        pp = (W/2, H/2)
    else:
        pp = to_numpy(pp)

    best = 0,
    for focal in tentative_focals:
        K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)])

        success, R, T, inliers = cv2.solvePnPRansac(pts3d[msk], pixels[msk], K, None,
                                                    iterationsCount=niter_PnP, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP)
        if not success:
            continue

        score = len(inliers)
        if success and score > best[0]:
            best = score, R, T, focal

    if not best[0]:
        return None

    _, R, T, best_focal = best
    R = cv2.Rodrigues(R)[0]  # world to cam
    R, T = map(torch.from_numpy, (R, T))
    return best_focal, inv(sRT_to_4x4(1, R, T, device))  # cam to world


def get_known_poses(self):
    if self.has_im_poses:
        known_poses_msk = torch.tensor([not (p.requires_grad) for p in self.im_poses])
        known_poses = self.get_im_poses()
        return known_poses_msk.sum(), known_poses_msk, known_poses
    else:
        return 0, None, None


def get_known_focals(self):
    if self.has_im_poses:
        known_focal_msk = self.get_known_focal_mask()
        known_focals = self.get_focals()
        return known_focal_msk.sum(), known_focal_msk, known_focals
    else:
        return 0, None, None


def align_multiple_poses(src_poses, target_poses):
    N = len(src_poses)
    assert src_poses.shape == target_poses.shape == (N, 4, 4)

    def center_and_z(poses):
        eps = get_med_dist_between_poses(poses) / 100
        return torch.cat((poses[:, :3, 3], poses[:, :3, 3] + eps*poses[:, :3, 2]))
    R, T, s = roma.rigid_points_registration(center_and_z(src_poses), center_and_z(target_poses), compute_scaling=True)
    return s, R, T