File size: 10,187 Bytes
f53b39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import random
import sys
import traceback
from argparse import ArgumentParser
import submitit
import torch
from hydra import compose, initialize_config_module
from hydra.utils import instantiate
from iopath.common.file_io import g_pathmgr
from omegaconf import OmegaConf
from training.utils.train_utils import makedir, register_omegaconf_resolvers
os.environ["HYDRA_FULL_ERROR"] = "1"
def single_proc_run(local_rank, main_port, cfg, world_size):
"""Single GPU process"""
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(main_port)
os.environ["RANK"] = str(local_rank)
os.environ["LOCAL_RANK"] = str(local_rank)
os.environ["WORLD_SIZE"] = str(world_size)
try:
register_omegaconf_resolvers()
except Exception as e:
logging.info(e)
trainer = instantiate(cfg.trainer, _recursive_=False)
trainer.run()
def single_node_runner(cfg, main_port: int):
assert cfg.launcher.num_nodes == 1
num_proc = cfg.launcher.gpus_per_node
torch.multiprocessing.set_start_method(
"spawn"
) # CUDA runtime does not support `fork`
if num_proc == 1:
# directly call single_proc so we can easily set breakpoints
# mp.spawn does not let us set breakpoints
single_proc_run(local_rank=0, main_port=main_port, cfg=cfg, world_size=num_proc)
else:
mp_runner = torch.multiprocessing.start_processes
args = (main_port, cfg, num_proc)
# Note: using "fork" below, "spawn" causes time and error regressions. Using
# spawn changes the default multiprocessing context to spawn, which doesn't
# interact well with the dataloaders (likely due to the use of OpenCV).
mp_runner(single_proc_run, args=args, nprocs=num_proc, start_method="spawn")
def format_exception(e: Exception, limit=20):
traceback_str = "".join(traceback.format_tb(e.__traceback__, limit=limit))
return f"{type(e).__name__}: {e}\nTraceback:\n{traceback_str}"
class SubmititRunner(submitit.helpers.Checkpointable):
"""A callable which is passed to submitit to launch the jobs."""
def __init__(self, port, cfg):
self.cfg = cfg
self.port = port
self.has_setup = False
def run_trainer(self):
job_env = submitit.JobEnvironment()
# Need to add this again so the hydra.job.set_env PYTHONPATH
# is also set when launching jobs.
add_pythonpath_to_sys_path()
os.environ["MASTER_ADDR"] = job_env.hostnames[0]
os.environ["MASTER_PORT"] = str(self.port)
os.environ["RANK"] = str(job_env.global_rank)
os.environ["LOCAL_RANK"] = str(job_env.local_rank)
os.environ["WORLD_SIZE"] = str(job_env.num_tasks)
register_omegaconf_resolvers()
cfg_resolved = OmegaConf.to_container(self.cfg, resolve=False)
cfg_resolved = OmegaConf.create(cfg_resolved)
trainer = instantiate(cfg_resolved.trainer, _recursive_=False)
trainer.run()
def __call__(self):
job_env = submitit.JobEnvironment()
self.setup_job_info(job_env.job_id, job_env.global_rank)
try:
self.run_trainer()
except Exception as e:
# Log the exception. Then raise it again (as what SubmititRunner currently does).
message = format_exception(e)
logging.error(message)
raise e
def setup_job_info(self, job_id, rank):
"""Set up slurm job info"""
self.job_info = {
"job_id": job_id,
"rank": rank,
"cluster": self.cfg.get("cluster", None),
"experiment_log_dir": self.cfg.launcher.experiment_log_dir,
}
self.has_setup = True
def add_pythonpath_to_sys_path():
if "PYTHONPATH" not in os.environ or not os.environ["PYTHONPATH"]:
return
sys.path = os.environ["PYTHONPATH"].split(":") + sys.path
def main(args) -> None:
cfg = compose(config_name=args.config)
if cfg.launcher.experiment_log_dir is None:
cfg.launcher.experiment_log_dir = os.path.join(
os.getcwd(), "sam2_logs", args.config
)
print("###################### Train App Config ####################")
print(OmegaConf.to_yaml(cfg))
print("############################################################")
add_pythonpath_to_sys_path()
makedir(cfg.launcher.experiment_log_dir)
with g_pathmgr.open(
os.path.join(cfg.launcher.experiment_log_dir, "config.yaml"), "w"
) as f:
f.write(OmegaConf.to_yaml(cfg))
cfg_resolved = OmegaConf.to_container(cfg, resolve=False)
cfg_resolved = OmegaConf.create(cfg_resolved)
with g_pathmgr.open(
os.path.join(cfg.launcher.experiment_log_dir, "config_resolved.yaml"), "w"
) as f:
f.write(OmegaConf.to_yaml(cfg_resolved, resolve=True))
submitit_conf = cfg.get("submitit", None)
assert submitit_conf is not None, "Missing submitit config"
submitit_dir = cfg.launcher.experiment_log_dir
submitit_dir = os.path.join(submitit_dir, "submitit_logs")
# Priotrize cmd line args
cfg.launcher.gpus_per_node = (
args.num_gpus if args.num_gpus is not None else cfg.launcher.gpus_per_node
)
cfg.launcher.num_nodes = (
args.num_nodes if args.num_nodes is not None else cfg.launcher.num_nodes
)
submitit_conf.use_cluster = (
args.use_cluster if args.use_cluster is not None else submitit_conf.use_cluster
)
if submitit_conf.use_cluster:
executor = submitit.AutoExecutor(folder=submitit_dir)
submitit_conf.partition = (
args.partition
if args.partition is not None
else submitit_conf.get("partition", None)
)
submitit_conf.account = (
args.account
if args.account is not None
else submitit_conf.get("account", None)
)
submitit_conf.qos = (
args.qos if args.qos is not None else submitit_conf.get("qos", None)
)
job_kwargs = {
"timeout_min": 60 * submitit_conf.timeout_hour,
"name": (
submitit_conf.name if hasattr(submitit_conf, "name") else args.config
),
"slurm_partition": submitit_conf.partition,
"gpus_per_node": cfg.launcher.gpus_per_node,
"tasks_per_node": cfg.launcher.gpus_per_node, # one task per GPU
"cpus_per_task": submitit_conf.cpus_per_task,
"nodes": cfg.launcher.num_nodes,
"slurm_additional_parameters": {
"exclude": " ".join(submitit_conf.get("exclude_nodes", [])),
},
}
if "include_nodes" in submitit_conf:
assert (
len(submitit_conf["include_nodes"]) >= cfg.launcher.num_nodes
), "Not enough nodes"
job_kwargs["slurm_additional_parameters"]["nodelist"] = " ".join(
submitit_conf["include_nodes"]
)
if submitit_conf.account is not None:
job_kwargs["slurm_additional_parameters"]["account"] = submitit_conf.account
if submitit_conf.qos is not None:
job_kwargs["slurm_additional_parameters"]["qos"] = submitit_conf.qos
if submitit_conf.get("mem_gb", None) is not None:
job_kwargs["mem_gb"] = submitit_conf.mem_gb
elif submitit_conf.get("mem", None) is not None:
job_kwargs["slurm_mem"] = submitit_conf.mem
if submitit_conf.get("constraints", None) is not None:
job_kwargs["slurm_constraint"] = submitit_conf.constraints
if submitit_conf.get("comment", None) is not None:
job_kwargs["slurm_comment"] = submitit_conf.comment
# Supports only cpu-bind option within srun_args. New options can be added here
if submitit_conf.get("srun_args", None) is not None:
job_kwargs["slurm_srun_args"] = []
if submitit_conf.srun_args.get("cpu_bind", None) is not None:
job_kwargs["slurm_srun_args"].extend(
["--cpu-bind", submitit_conf.srun_args.cpu_bind]
)
print("###################### SLURM Config ####################")
print(job_kwargs)
print("##########################################")
executor.update_parameters(**job_kwargs)
main_port = random.randint(
submitit_conf.port_range[0], submitit_conf.port_range[1]
)
runner = SubmititRunner(main_port, cfg)
job = executor.submit(runner)
print(f"Submitit Job ID: {job.job_id}")
runner.setup_job_info(job.job_id, rank=0)
else:
cfg.launcher.num_nodes = 1
main_port = random.randint(
submitit_conf.port_range[0], submitit_conf.port_range[1]
)
single_node_runner(cfg, main_port)
if __name__ == "__main__":
initialize_config_module("sam2", version_base="1.2")
parser = ArgumentParser()
parser.add_argument(
"-c",
"--config",
required=True,
type=str,
help="path to config file (e.g. configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml)",
)
parser.add_argument(
"--use-cluster",
type=int,
default=None,
help="whether to launch on a cluster, 0: run locally, 1: run on a cluster",
)
parser.add_argument("--partition", type=str, default=None, help="SLURM partition")
parser.add_argument("--account", type=str, default=None, help="SLURM account")
parser.add_argument("--qos", type=str, default=None, help="SLURM qos")
parser.add_argument(
"--num-gpus", type=int, default=None, help="number of GPUS per node"
)
parser.add_argument("--num-nodes", type=int, default=None, help="Number of nodes")
args = parser.parse_args()
args.use_cluster = bool(args.use_cluster) if args.use_cluster is not None else None
register_omegaconf_resolvers()
main(args)
|