File size: 26,348 Bytes
f53b39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import numpy as np
import torch
import torch.distributed
from sam2.modeling.sam2_base import SAM2Base
from sam2.modeling.sam2_utils import (
get_1d_sine_pe,
get_next_point,
sample_box_points,
select_closest_cond_frames,
)
from sam2.utils.misc import concat_points
from training.utils.data_utils import BatchedVideoDatapoint
class SAM2Train(SAM2Base):
def __init__(
self,
image_encoder,
memory_attention=None,
memory_encoder=None,
prob_to_use_pt_input_for_train=0.0,
prob_to_use_pt_input_for_eval=0.0,
prob_to_use_box_input_for_train=0.0,
prob_to_use_box_input_for_eval=0.0,
# if it is greater than 1, we interactive point sampling in the 1st frame and other randomly selected frames
num_frames_to_correct_for_train=1, # default: only iteratively sample on first frame
num_frames_to_correct_for_eval=1, # default: only iteratively sample on first frame
rand_frames_to_correct_for_train=False,
rand_frames_to_correct_for_eval=False,
# how many frames to use as initial conditioning frames (for both point input and mask input; the first frame is always used as an initial conditioning frame)
# - if `rand_init_cond_frames` below is True, we randomly sample 1~num_init_cond_frames initial conditioning frames
# - otherwise we sample a fixed number of num_init_cond_frames initial conditioning frames
# note: for point input, we sample correction points on all such initial conditioning frames, and we require that `num_frames_to_correct` >= `num_init_cond_frames`;
# these are initial conditioning frames because as we track the video, more conditioning frames might be added
# when a frame receives correction clicks under point input if `add_all_frames_to_correct_as_cond=True`
num_init_cond_frames_for_train=1, # default: only use the first frame as initial conditioning frame
num_init_cond_frames_for_eval=1, # default: only use the first frame as initial conditioning frame
rand_init_cond_frames_for_train=True, # default: random 1~num_init_cond_frames_for_train cond frames (to be constent w/ previous TA data loader)
rand_init_cond_frames_for_eval=False,
# if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
# if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
add_all_frames_to_correct_as_cond=False,
# how many additional correction points to sample (on each frame selected to be corrected)
# note that the first frame receives an initial input click (in addition to any correction clicks)
num_correction_pt_per_frame=7,
# method for point sampling during evaluation
# "uniform" (sample uniformly from error region) or "center" (use the point with the largest distance to error region boundary)
# default to "center" to be consistent with evaluation in the SAM paper
pt_sampling_for_eval="center",
# During training, we optionally allow sampling the correction points from GT regions
# instead of the prediction error regions with a small probability. This might allow the
# model to overfit less to the error regions in training datasets
prob_to_sample_from_gt_for_train=0.0,
use_act_ckpt_iterative_pt_sampling=False,
# whether to forward image features per frame (as it's being tracked) during evaluation, instead of forwarding image features
# of all frames at once. This avoids backbone OOM errors on very long videos in evaluation, but could be slightly slower.
forward_backbone_per_frame_for_eval=False,
freeze_image_encoder=False,
**kwargs,
):
super().__init__(image_encoder, memory_attention, memory_encoder, **kwargs)
self.use_act_ckpt_iterative_pt_sampling = use_act_ckpt_iterative_pt_sampling
self.forward_backbone_per_frame_for_eval = forward_backbone_per_frame_for_eval
# Point sampler and conditioning frames
self.prob_to_use_pt_input_for_train = prob_to_use_pt_input_for_train
self.prob_to_use_box_input_for_train = prob_to_use_box_input_for_train
self.prob_to_use_pt_input_for_eval = prob_to_use_pt_input_for_eval
self.prob_to_use_box_input_for_eval = prob_to_use_box_input_for_eval
if prob_to_use_pt_input_for_train > 0 or prob_to_use_pt_input_for_eval > 0:
logging.info(
f"Training with points (sampled from masks) as inputs with p={prob_to_use_pt_input_for_train}"
)
assert num_frames_to_correct_for_train >= num_init_cond_frames_for_train
assert num_frames_to_correct_for_eval >= num_init_cond_frames_for_eval
self.num_frames_to_correct_for_train = num_frames_to_correct_for_train
self.num_frames_to_correct_for_eval = num_frames_to_correct_for_eval
self.rand_frames_to_correct_for_train = rand_frames_to_correct_for_train
self.rand_frames_to_correct_for_eval = rand_frames_to_correct_for_eval
# Initial multi-conditioning frames
self.num_init_cond_frames_for_train = num_init_cond_frames_for_train
self.num_init_cond_frames_for_eval = num_init_cond_frames_for_eval
self.rand_init_cond_frames_for_train = rand_init_cond_frames_for_train
self.rand_init_cond_frames_for_eval = rand_init_cond_frames_for_eval
self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
self.num_correction_pt_per_frame = num_correction_pt_per_frame
self.pt_sampling_for_eval = pt_sampling_for_eval
self.prob_to_sample_from_gt_for_train = prob_to_sample_from_gt_for_train
# A random number generator with a fixed initial seed across GPUs
self.rng = np.random.default_rng(seed=42)
if freeze_image_encoder:
for p in self.image_encoder.parameters():
p.requires_grad = False
def forward(self, input: BatchedVideoDatapoint):
if self.training or not self.forward_backbone_per_frame_for_eval:
# precompute image features on all frames before tracking
backbone_out = self.forward_image(input.flat_img_batch)
else:
# defer image feature computation on a frame until it's being tracked
backbone_out = {"backbone_fpn": None, "vision_pos_enc": None}
backbone_out = self.prepare_prompt_inputs(backbone_out, input)
previous_stages_out = self.forward_tracking(backbone_out, input)
return previous_stages_out
def _prepare_backbone_features_per_frame(self, img_batch, img_ids):
"""Compute the image backbone features on the fly for the given img_ids."""
# Only forward backbone on unique image ids to avoid repetitive computation
# (if `img_ids` has only one element, it's already unique so we skip this step).
if img_ids.numel() > 1:
unique_img_ids, inv_ids = torch.unique(img_ids, return_inverse=True)
else:
unique_img_ids, inv_ids = img_ids, None
# Compute the image features on those unique image ids
image = img_batch[unique_img_ids]
backbone_out = self.forward_image(image)
(
_,
vision_feats,
vision_pos_embeds,
feat_sizes,
) = self._prepare_backbone_features(backbone_out)
# Inverse-map image features for `unique_img_ids` to the final image features
# for the original input `img_ids`.
if inv_ids is not None:
image = image[inv_ids]
vision_feats = [x[:, inv_ids] for x in vision_feats]
vision_pos_embeds = [x[:, inv_ids] for x in vision_pos_embeds]
return image, vision_feats, vision_pos_embeds, feat_sizes
def prepare_prompt_inputs(self, backbone_out, input, start_frame_idx=0):
"""
Prepare input mask, point or box prompts. Optionally, we allow tracking from
a custom `start_frame_idx` to the end of the video (for evaluation purposes).
"""
# Load the ground-truth masks on all frames (so that we can later
# sample correction points from them)
# gt_masks_per_frame = {
# stage_id: targets.segments.unsqueeze(1) # [B, 1, H_im, W_im]
# for stage_id, targets in enumerate(input.find_targets)
# }
gt_masks_per_frame = {
stage_id: masks.unsqueeze(1) # [B, 1, H_im, W_im]
for stage_id, masks in enumerate(input.masks)
}
# gt_masks_per_frame = input.masks.unsqueeze(2) # [T,B,1,H_im,W_im] keep everything in tensor form
backbone_out["gt_masks_per_frame"] = gt_masks_per_frame
num_frames = input.num_frames
backbone_out["num_frames"] = num_frames
# Randomly decide whether to use point inputs or mask inputs
if self.training:
prob_to_use_pt_input = self.prob_to_use_pt_input_for_train
prob_to_use_box_input = self.prob_to_use_box_input_for_train
num_frames_to_correct = self.num_frames_to_correct_for_train
rand_frames_to_correct = self.rand_frames_to_correct_for_train
num_init_cond_frames = self.num_init_cond_frames_for_train
rand_init_cond_frames = self.rand_init_cond_frames_for_train
else:
prob_to_use_pt_input = self.prob_to_use_pt_input_for_eval
prob_to_use_box_input = self.prob_to_use_box_input_for_eval
num_frames_to_correct = self.num_frames_to_correct_for_eval
rand_frames_to_correct = self.rand_frames_to_correct_for_eval
num_init_cond_frames = self.num_init_cond_frames_for_eval
rand_init_cond_frames = self.rand_init_cond_frames_for_eval
if num_frames == 1:
# here we handle a special case for mixing video + SAM on image training,
# where we force using point input for the SAM task on static images
prob_to_use_pt_input = 1.0
num_frames_to_correct = 1
num_init_cond_frames = 1
assert num_init_cond_frames >= 1
# (here `self.rng.random()` returns value in range 0.0 <= X < 1.0)
use_pt_input = self.rng.random() < prob_to_use_pt_input
if rand_init_cond_frames and num_init_cond_frames > 1:
# randomly select 1 to `num_init_cond_frames` frames as initial conditioning frames
num_init_cond_frames = self.rng.integers(
1, num_init_cond_frames, endpoint=True
)
if (
use_pt_input
and rand_frames_to_correct
and num_frames_to_correct > num_init_cond_frames
):
# randomly select `num_init_cond_frames` to `num_frames_to_correct` frames to sample
# correction clicks (only for the case of point input)
num_frames_to_correct = self.rng.integers(
num_init_cond_frames, num_frames_to_correct, endpoint=True
)
backbone_out["use_pt_input"] = use_pt_input
# Sample initial conditioning frames
if num_init_cond_frames == 1:
init_cond_frames = [start_frame_idx] # starting frame
else:
# starting frame + randomly selected remaining frames (without replacement)
init_cond_frames = [start_frame_idx] + self.rng.choice(
range(start_frame_idx + 1, num_frames),
num_init_cond_frames - 1,
replace=False,
).tolist()
backbone_out["init_cond_frames"] = init_cond_frames
backbone_out["frames_not_in_init_cond"] = [
t for t in range(start_frame_idx, num_frames) if t not in init_cond_frames
]
# Prepare mask or point inputs on initial conditioning frames
backbone_out["mask_inputs_per_frame"] = {} # {frame_idx: <input_masks>}
backbone_out["point_inputs_per_frame"] = {} # {frame_idx: <input_points>}
for t in init_cond_frames:
if not use_pt_input:
backbone_out["mask_inputs_per_frame"][t] = gt_masks_per_frame[t]
else:
# During training # P(box) = prob_to_use_pt_input * prob_to_use_box_input
use_box_input = self.rng.random() < prob_to_use_box_input
if use_box_input:
points, labels = sample_box_points(
gt_masks_per_frame[t],
)
else:
# (here we only sample **one initial point** on initial conditioning frames from the
# ground-truth mask; we may sample more correction points on the fly)
points, labels = get_next_point(
gt_masks=gt_masks_per_frame[t],
pred_masks=None,
method=(
"uniform" if self.training else self.pt_sampling_for_eval
),
)
point_inputs = {"point_coords": points, "point_labels": labels}
backbone_out["point_inputs_per_frame"][t] = point_inputs
# Sample frames where we will add correction clicks on the fly
# based on the error between prediction and ground-truth masks
if not use_pt_input:
# no correction points will be sampled when using mask inputs
frames_to_add_correction_pt = []
elif num_frames_to_correct == num_init_cond_frames:
frames_to_add_correction_pt = init_cond_frames
else:
assert num_frames_to_correct > num_init_cond_frames
# initial cond frame + randomly selected remaining frames (without replacement)
extra_num = num_frames_to_correct - num_init_cond_frames
frames_to_add_correction_pt = (
init_cond_frames
+ self.rng.choice(
backbone_out["frames_not_in_init_cond"], extra_num, replace=False
).tolist()
)
backbone_out["frames_to_add_correction_pt"] = frames_to_add_correction_pt
return backbone_out
def forward_tracking(
self, backbone_out, input: BatchedVideoDatapoint, return_dict=False
):
"""Forward video tracking on each frame (and sample correction clicks)."""
img_feats_already_computed = backbone_out["backbone_fpn"] is not None
if img_feats_already_computed:
# Prepare the backbone features
# - vision_feats and vision_pos_embeds are in (HW)BC format
(
_,
vision_feats,
vision_pos_embeds,
feat_sizes,
) = self._prepare_backbone_features(backbone_out)
# Starting the stage loop
num_frames = backbone_out["num_frames"]
init_cond_frames = backbone_out["init_cond_frames"]
frames_to_add_correction_pt = backbone_out["frames_to_add_correction_pt"]
# first process all the initial conditioning frames to encode them as memory,
# and then conditioning on them to track the remaining frames
processing_order = init_cond_frames + backbone_out["frames_not_in_init_cond"]
output_dict = {
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
}
for stage_id in processing_order:
# Get the image features for the current frames
# img_ids = input.find_inputs[stage_id].img_ids
img_ids = input.flat_obj_to_img_idx[stage_id]
if img_feats_already_computed:
# Retrieve image features according to img_ids (if they are already computed).
current_vision_feats = [x[:, img_ids] for x in vision_feats]
current_vision_pos_embeds = [x[:, img_ids] for x in vision_pos_embeds]
else:
# Otherwise, compute the image features on the fly for the given img_ids
# (this might be used for evaluation on long videos to avoid backbone OOM).
(
_,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
) = self._prepare_backbone_features_per_frame(
input.flat_img_batch, img_ids
)
# Get output masks based on this frame's prompts and previous memory
current_out = self.track_step(
frame_idx=stage_id,
is_init_cond_frame=stage_id in init_cond_frames,
current_vision_feats=current_vision_feats,
current_vision_pos_embeds=current_vision_pos_embeds,
feat_sizes=feat_sizes,
point_inputs=backbone_out["point_inputs_per_frame"].get(stage_id, None),
mask_inputs=backbone_out["mask_inputs_per_frame"].get(stage_id, None),
gt_masks=backbone_out["gt_masks_per_frame"].get(stage_id, None),
frames_to_add_correction_pt=frames_to_add_correction_pt,
output_dict=output_dict,
num_frames=num_frames,
)
# Append the output, depending on whether it's a conditioning frame
add_output_as_cond_frame = stage_id in init_cond_frames or (
self.add_all_frames_to_correct_as_cond
and stage_id in frames_to_add_correction_pt
)
if add_output_as_cond_frame:
output_dict["cond_frame_outputs"][stage_id] = current_out
else:
output_dict["non_cond_frame_outputs"][stage_id] = current_out
if return_dict:
return output_dict
# turn `output_dict` into a list for loss function
all_frame_outputs = {}
all_frame_outputs.update(output_dict["cond_frame_outputs"])
all_frame_outputs.update(output_dict["non_cond_frame_outputs"])
all_frame_outputs = [all_frame_outputs[t] for t in range(num_frames)]
# Make DDP happy with activation checkpointing by removing unused keys
all_frame_outputs = [
{k: v for k, v in d.items() if k != "obj_ptr"} for d in all_frame_outputs
]
return all_frame_outputs
def track_step(
self,
frame_idx,
is_init_cond_frame,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
point_inputs,
mask_inputs,
output_dict,
num_frames,
track_in_reverse=False, # tracking in reverse time order (for demo usage)
run_mem_encoder=True, # Whether to run the memory encoder on the predicted masks.
prev_sam_mask_logits=None, # The previously predicted SAM mask logits.
frames_to_add_correction_pt=None,
gt_masks=None,
):
if frames_to_add_correction_pt is None:
frames_to_add_correction_pt = []
current_out, sam_outputs, high_res_features, pix_feat = self._track_step(
frame_idx,
is_init_cond_frame,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
point_inputs,
mask_inputs,
output_dict,
num_frames,
track_in_reverse,
prev_sam_mask_logits,
)
(
low_res_multimasks,
high_res_multimasks,
ious,
low_res_masks,
high_res_masks,
obj_ptr,
object_score_logits,
) = sam_outputs
current_out["multistep_pred_masks"] = low_res_masks
current_out["multistep_pred_masks_high_res"] = high_res_masks
current_out["multistep_pred_multimasks"] = [low_res_multimasks]
current_out["multistep_pred_multimasks_high_res"] = [high_res_multimasks]
current_out["multistep_pred_ious"] = [ious]
current_out["multistep_point_inputs"] = [point_inputs]
current_out["multistep_object_score_logits"] = [object_score_logits]
# Optionally, sample correction points iteratively to correct the mask
if frame_idx in frames_to_add_correction_pt:
point_inputs, final_sam_outputs = self._iter_correct_pt_sampling(
is_init_cond_frame,
point_inputs,
gt_masks,
high_res_features,
pix_feat,
low_res_multimasks,
high_res_multimasks,
ious,
low_res_masks,
high_res_masks,
object_score_logits,
current_out,
)
(
_,
_,
_,
low_res_masks,
high_res_masks,
obj_ptr,
object_score_logits,
) = final_sam_outputs
# Use the final prediction (after all correction steps for output and eval)
current_out["pred_masks"] = low_res_masks
current_out["pred_masks_high_res"] = high_res_masks
current_out["obj_ptr"] = obj_ptr
# Finally run the memory encoder on the predicted mask to encode
# it into a new memory feature (that can be used in future frames)
self._encode_memory_in_output(
current_vision_feats,
feat_sizes,
point_inputs,
run_mem_encoder,
high_res_masks,
object_score_logits,
current_out,
)
return current_out
def _iter_correct_pt_sampling(
self,
is_init_cond_frame,
point_inputs,
gt_masks,
high_res_features,
pix_feat_with_mem,
low_res_multimasks,
high_res_multimasks,
ious,
low_res_masks,
high_res_masks,
object_score_logits,
current_out,
):
assert gt_masks is not None
all_pred_masks = [low_res_masks]
all_pred_high_res_masks = [high_res_masks]
all_pred_multimasks = [low_res_multimasks]
all_pred_high_res_multimasks = [high_res_multimasks]
all_pred_ious = [ious]
all_point_inputs = [point_inputs]
all_object_score_logits = [object_score_logits]
for _ in range(self.num_correction_pt_per_frame):
# sample a new point from the error between prediction and ground-truth
# (with a small probability, directly sample from GT masks instead of errors)
if self.training and self.prob_to_sample_from_gt_for_train > 0:
sample_from_gt = (
self.rng.random() < self.prob_to_sample_from_gt_for_train
)
else:
sample_from_gt = False
# if `pred_for_new_pt` is None, only GT masks will be used for point sampling
pred_for_new_pt = None if sample_from_gt else (high_res_masks > 0)
new_points, new_labels = get_next_point(
gt_masks=gt_masks,
pred_masks=pred_for_new_pt,
method="uniform" if self.training else self.pt_sampling_for_eval,
)
point_inputs = concat_points(point_inputs, new_points, new_labels)
# Feed the mask logits of the previous SAM outputs in the next SAM decoder step.
# For tracking, this means that when the user adds a correction click, we also feed
# the tracking output mask logits along with the click as input to the SAM decoder.
mask_inputs = low_res_masks
multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
if self.use_act_ckpt_iterative_pt_sampling and not multimask_output:
sam_outputs = torch.utils.checkpoint.checkpoint(
self._forward_sam_heads,
backbone_features=pix_feat_with_mem,
point_inputs=point_inputs,
mask_inputs=mask_inputs,
high_res_features=high_res_features,
multimask_output=multimask_output,
use_reentrant=False,
)
else:
sam_outputs = self._forward_sam_heads(
backbone_features=pix_feat_with_mem,
point_inputs=point_inputs,
mask_inputs=mask_inputs,
high_res_features=high_res_features,
multimask_output=multimask_output,
)
(
low_res_multimasks,
high_res_multimasks,
ious,
low_res_masks,
high_res_masks,
_,
object_score_logits,
) = sam_outputs
all_pred_masks.append(low_res_masks)
all_pred_high_res_masks.append(high_res_masks)
all_pred_multimasks.append(low_res_multimasks)
all_pred_high_res_multimasks.append(high_res_multimasks)
all_pred_ious.append(ious)
all_point_inputs.append(point_inputs)
all_object_score_logits.append(object_score_logits)
# Concatenate the masks along channel (to compute losses on all of them,
# using `MultiStepIteractiveMasks`)
current_out["multistep_pred_masks"] = torch.cat(all_pred_masks, dim=1)
current_out["multistep_pred_masks_high_res"] = torch.cat(
all_pred_high_res_masks, dim=1
)
current_out["multistep_pred_multimasks"] = all_pred_multimasks
current_out["multistep_pred_multimasks_high_res"] = all_pred_high_res_multimasks
current_out["multistep_pred_ious"] = all_pred_ious
current_out["multistep_point_inputs"] = all_point_inputs
current_out["multistep_object_score_logits"] = all_object_score_logits
return point_inputs, sam_outputs
|