File size: 8,686 Bytes
f53b39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Dataloader for SceneFlow
# --------------------------------------------------------
import os.path as osp
from glob import glob
import itertools
import numpy as np
import re
import cv2
from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset
from dust3r.utils.image import imread_cv2
def readPFM(file):
file = open(file, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header == b'PF':
color = True
elif header == b'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data
#
#
# split = 'train'
#
# ROOT = "/media/8TB/tyhuang/video_depth/SceneFlow"
#
# outscene_list = ["Monkaa_proc"]
#
# # if split == 'train':
# # outscene_list = ["FlyingThings3D_proc", "Driving_proc", "Monkaa_proc"]
# # elif split == 'test':
# # outscene_list = ["FlyingThings3D_proc"]
#
# scene_list = []
# for outscene in outscene_list:
# if outscene == "FlyingThings3D_proc":
# split_folder = "TRAIN" if split == 'train' else "TEST"
# scene_list.extend(sorted(glob(osp.join(ROOT, outscene, split_folder, '*/*/*'))))
# if outscene == "Driving_proc":
# scene_list.extend(sorted(glob(osp.join(ROOT, outscene, '*/*/*/*'))))
# if outscene == "Monkaa_proc":
# scene_list.extend(sorted(glob(osp.join(ROOT, outscene, '*/*'))))
#
#
# pair_dict = {}
# pair_num = 0
# for scene in scene_list:
# depth_files = sorted(glob(osp.join(scene, '*_depth.pfm')))
# mask_files = sorted(glob(osp.join(scene, '*_mask.png')))
#
# max_depth = 0
#
# for depth_file, mask_file in zip(depth_files, mask_files):
#
# depth = readPFM(depth_file)
#
# maskmap = imread_cv2(mask_file, cv2.IMREAD_UNCHANGED).astype(np.float32)
# maskmap = (maskmap / 255.0) > 0.1
# # update the depthmap with mask
#
# maskmap = (maskmap * (depth<400)).astype(np.float32)
# cv2.imwrite(mask_file, (maskmap * 255).astype(np.uint8))
#
# # depth *= maskmap
# #
# # maxdepth = np.max(depth) if np.max(depth) > max_depth else max_depth
class SceneFlowDatasets(BaseStereoViewDataset):
def __init__(self, *args, split, ROOT, **kwargs):
self.ROOT = ROOT # ROOT = "/media/tyhuang/T9/videodepth_data/SceneFlow"
super().__init__(*args, **kwargs)
self.dataset_label = 'SceneFlow'
if split == 'train':
self.outscene_list = ["Driving_proc", "Monkaa_proc","FlyingThings3D_proc"]
elif split == 'test':
self.outscene_list = ["FlyingThings3D_proc"]
scene_list = []
for outscene in self.outscene_list:
if outscene == "FlyingThings3D_proc":
split_folder = "TRAIN" if split == 'train' else "TEST"
scene_list.extend(sorted(glob(osp.join(ROOT, outscene, split_folder, '*/*/*'))))
if outscene == "Driving_proc":
scene_list.extend(sorted(glob(osp.join(ROOT, outscene, '*/*/*/*'))))
if outscene == "Monkaa_proc":
scene_list.extend(sorted(glob(osp.join(ROOT, outscene, '*/*'))))
self.pair_dict = {}
pair_num = 0
for scene in scene_list:
imgs = sorted(glob(osp.join(scene, '*_rgb.jpg')))
len_imgs = len(imgs)
combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) if abs(i - j) <= 10 ]
# if "FlyingThings3D_proc" in scene:
# combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2)]
# if "Driving_proc" in scene:
# if "fast" in scene:
# combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2)
# if 0 < abs(i - j) <= 8 or (abs(i - j) <= 20 and abs(i - j) % 5 == 0)]
# elif "slow" in scene:
# combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2)
# if abs(i - j) <= 12 or (abs(i - j) <= 25 and abs(i - j) % 5 == 0)]
# if "Monkaa_proc" in scene:
# combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2)
# if abs(i - j) <= 12 or (abs(i - j) <= 25 and abs(i - j) % 5 == 0)]
for (i, j) in combinations:
self.pair_dict[pair_num] = [imgs[i], imgs[j]]
pair_num += 1
def __len__(self):
return len(self.pair_dict)
def _get_views(self, idx, resolution, rng):
views = []
for img_path in self.pair_dict[idx]:
rgb_image = imread_cv2(img_path)
depthmap_path = img_path.replace('_rgb.jpg', '_depth.pfm')
mask_path = img_path.replace('_rgb.jpg', '_mask.png')
metadata_path = img_path.replace('_rgb.jpg', '_metadata.npz')
depthmap = readPFM(depthmap_path)
pred_depth = np.load(img_path.replace('.jpg', '_pred_depth_' + self.depth_prior_name + '.npz'))#['depth']
focal_length_px = pred_depth['focallength_px']#[0][0]
pred_depth = pred_depth['depth']
if focal_length_px.shape == (3,3):
focal_length_px = focal_length_px[0][0]
pred_depth = self.pixel_to_pointcloud(pred_depth, focal_length_px)
maskmap = imread_cv2(mask_path, cv2.IMREAD_UNCHANGED).astype(np.float32)
maskmap = (maskmap / 255.0) > 0.1
#maskmap = maskmap * (depthmap<100)
depthmap *= maskmap
#pred_depth = pred_depth#/20.0
metadata = np.load(metadata_path)
intrinsics = np.float32(metadata['camera_intrinsics'])
camera_pose = np.float32(metadata['camera_pose'])
# max_depth = np.float32(metadata['maximum_depth'])
#
# depthmap = (depthmap.astype(np.float32) / 10.0)
# camera_pose[:3, 3] /= 10.0
rgb_image, depthmap, pred_depth, intrinsics = self._crop_resize_if_necessary(
rgb_image, depthmap, pred_depth, intrinsics, resolution, rng=rng, info=img_path)
num_valid = (depthmap > 0.0).sum()
# assert num_valid > 0
# if num_valid==0:
# depthmap +=0.001
views.append(dict(
img=rgb_image,
depthmap=depthmap,
camera_pose=camera_pose,
camera_intrinsics=intrinsics,
dataset=self.dataset_label,
label=img_path,
instance=img_path,
pred_depth=pred_depth
))
return views
if __name__ == "__main__":
from dust3r.datasets.base.base_stereo_view_dataset import view_name
from dust3r.viz import SceneViz, auto_cam_size
from dust3r.utils.image import rgb
dataset = SceneFlowDatasets(split='train', ROOT="/media/tyhuang/T9/videodepth_data/SceneFlow", resolution=512, aug_crop=16)
for idx in np.random.permutation(len(dataset)):
views = dataset[idx]
assert len(views) == 2
print(view_name(views[0]), view_name(views[1]))
viz = SceneViz()
poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]]
cam_size = max(auto_cam_size(poses), 0.001)
for view_idx in [0, 1]:
pts3d = views[view_idx]['pts3d']
valid_mask = views[view_idx]['valid_mask']
colors = rgb(views[view_idx]['img'])
viz.add_pointcloud(pts3d, colors, valid_mask)
viz.add_camera(pose_c2w=views[view_idx]['camera_pose'],
focal=views[view_idx]['camera_intrinsics'][0, 0],
color=(idx * 255, (1 - idx) * 255, 0),
image=colors,
cam_size=cam_size)
viz.show() |