File size: 9,043 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fae69
f53b39e
 
 
 
 
 
 
 
 
 
 
4c5e22a
20e7d5a
f53b39e
 
 
 
 
 
 
 
 
 
 
20e7d5a
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04d1115
 
 
30580b7
f53b39e
 
04d1115
f53b39e
04d1115
f53b39e
 
 
 
 
04d1115
 
 
 
30580b7
f53b39e
 
04d1115
f53b39e
 
04d1115
 
 
 
0fb5fec
f53b39e
 
 
04d1115
 
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e23a503
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# gradio demo
# --------------------------------------------------------

import argparse
import math
import gradio
import os
import torch
import numpy as np
import tempfile
import functools
import copy
from tqdm import tqdm
import cv2
from PIL import Image

from dust3r.inference import inference
from dust3r.model import AsymmetricCroCo3DStereo
from dust3r.image_pairs import make_pairs
from dust3r.utils.image_pose import load_images, rgb, enlarge_seg_masks
from dust3r.utils.device import to_numpy
from dust3r.cloud_opt_flow import global_aligner, GlobalAlignerMode
import matplotlib.pyplot as pl
from transformers import pipeline
from dust3r.utils.viz_demo import convert_scene_output_to_glb
import depth_pro
import spaces
from huggingface_hub import hf_hub_download
pl.ion()

# for gpu >= Ampere and pytorch >= 1.12
torch.backends.cuda.matmul.allow_tf32 = True
batch_size = 1

tmpdirname = tempfile.mkdtemp(suffix='_align3r_gradio_demo')
image_size = 512
silent = True
gradio_delete_cache = 7200

hf_hub_download(repo_id="apple/DepthPro", filename='depth_pro.pt', local_dir='third_party/ml-depth-pro/checkpoints/')

class FileState:
    def __init__(self, outfile_name=None):
        self.outfile_name = outfile_name

    def __del__(self):
        if self.outfile_name is not None and os.path.isfile(self.outfile_name):
            os.remove(self.outfile_name)
        self.outfile_name = None

def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False,
                            clean_depth=False, transparent_cams=False, cam_size=0.05, show_cam=True, save_name=None, thr_for_init_conf=True):
    """
    extract 3D_model (glb file) from a reconstructed scene
    """
    if scene is None:
        return None
    # post processes
    if clean_depth:
        scene = scene.clean_pointcloud()
    if mask_sky:
        scene = scene.mask_sky()

    # get optimized values from scene
    rgbimg = scene.imgs
    focals = scene.get_focals().cpu()
    cams2world = scene.get_im_poses().cpu()
    # 3D pointcloud from depthmap, poses and intrinsics
    pts3d = to_numpy(scene.get_pts3d(raw_pts=True))
    scene.min_conf_thr = min_conf_thr
    scene.thr_for_init_conf = thr_for_init_conf
    msk = to_numpy(scene.get_masks())
    cmap = pl.get_cmap('viridis')
    cam_color = [cmap(i/len(rgbimg))[:3] for i in range(len(rgbimg))]
    cam_color = [(255*c[0], 255*c[1], 255*c[2]) for c in cam_color]
    return convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
                                        transparent_cams=transparent_cams, cam_size=cam_size, show_cam=show_cam, silent=silent, save_name=save_name,
                                        cam_color=cam_color)

def generate_monocular_depth_maps(img_list, depth_prior_name):
    depth_list = []
    focallength_px_list = []
    
    if depth_prior_name=='Depth Pro':
        model, transform = depth_pro.create_model_and_transforms(device='cuda')
        model.eval()

        for image_path in tqdm(img_list):
          #path_depthpro = image_path.replace('.png','_pred_depth_depthpro.npz').replace('.jpg','_pred_depth_depthpro.npz')
          image, _, f_px = depth_pro.load_rgb(image_path)
          image = transform(image)
          # Run inference.
          prediction = model.infer(image, f_px=f_px)
          depth = prediction["depth"].cpu()  # Depth in [m].
          focallength_px=prediction["focallength_px"].cpu()
          depth_list.append(depth)
          focallength_px_list.append(focallength_px)
          #np.savez_compressed(path_depthpro, depth=depth, focallength_px=prediction["focallength_px"].cpu())  
    elif depth_prior_name=='Depth Anything V2':
        pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Large-hf",device='cuda')
        for image_path in tqdm(img_list):
          #path_depthanything = image_path.replace('.png','_pred_depth_depthanything.npz').replace('.jpg','_pred_depth_depthanything.npz')
          image = Image.open(image_path)
          depth = pipe(image)["predicted_depth"].numpy()
          focallength_px = 200
          depth_list.append(depth)
          focallength_px_list.append(focallength_px)
          #np.savez_compressed(path_depthanything, depth=depth)  
    return depth_list, focallength_px_list

@spaces.GPU(duration=180)
def local_get_reconstructed_scene(filelist, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name, **kw):
    depth_list, focallength_px_list = generate_monocular_depth_maps(filelist, depth_prior_name)
    imgs = load_images(filelist, depth_list, focallength_px_list, size=image_size, verbose=not silent,traj_format='custom', depth_prior_name=depth_prior_name)
    pairs = []
    pairs.append((imgs[0], imgs[1]))
    output = inference(pairs, model, device, batch_size=batch_size, verbose=not silent)
    mode = GlobalAlignerMode.PairViewer
    scene = global_aligner(output, device=device, mode=mode, verbose=not silent)
    save_folder = './output'
    outfile = get_3D_model_from_scene(save_folder, silent, scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, show_cam)
      
    return outfile


def run_example(snapshot, matching_conf_thr, min_conf_thr, cam_size, as_pointcloud, shared_intrinsics, filelist, **kw):
    return local_get_reconstructed_scene(filelist, cam_size, **kw)

css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
title = "Align3R Demo"
with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, gradio_delete_cache)) as demo:
    filestate = gradio.State(None)
    gradio.HTML('<h2 style="text-align: center;">3D Reconstruction with Align3R</h2>')
    gradio.HTML('<p>Upload two images (wait for them to be fully uploaded before hitting the run button). '
                'If you want to try larger image collections, you can find the more complete version of this demo that you can run locally '
                'and more details about the method at <a href="https://github.com/jiah-cloud/Align3R">github.com/jiah-cloud/Align3R</a>. '
                'The checkpoint used in this demo is available at <a href="https://huggingface.co/cyun9286/Align3R_DepthAnythingV2_ViTLarge_BaseDecoder_512_dpt">Align3R (Depth Anything V2)</a> and <a href="https://huggingface.co/cyun9286/Align3R_DepthPro_ViTLarge_BaseDecoder_512_dpt">Align3R (Depth Pro)</a>.</p>')
    with gradio.Column():
        inputfiles = gradio.File(file_count="multiple")
        snapshot = gradio.Image(None, visible=False)
        with gradio.Row():
            # adjust the camera size in the output pointcloud
            cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001)

            depth_prior_name = gradio.Dropdown(
            ["Depth Pro", "Depth Anything V2"], label="monocular depth estimation model", info="Select the monocular depth estimation model.")
            min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.1, minimum=0.0, maximum=20, step=0.01)

            if depth_prior_name == "Depth Pro":
              weights_path = "cyun9286/Align3R_DepthPro_ViTLarge_BaseDecoder_512_dpt"
            else:
              weights_path = "cyun9286/Align3R_DepthAnythingV2_ViTLarge_BaseDecoder_512_dpt"
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
            model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(device)  
        with gradio.Row():
            as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
            mask_sky = gradio.Checkbox(value=False, label="Mask sky")
            clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps")
            transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras")
            # not to show camera
            show_cam = gradio.Checkbox(value=True, label="Show Camera")
        run_btn = gradio.Button("Run")
        outmodel = gradio.Model3D()

        # examples = gradio.Examples(
        #     examples=[
        #         ['./example/yellowman/frame_0003.png',
        #             0.0, 1.5, 0.2, True, False,
        #         ]
        #     ],
        #     inputs=[snapshot, matching_conf_thr, min_conf_thr, cam_size, as_pointcloud, shared_intrinsics, inputfiles],
        #     outputs=[filestate, outmodel],
        #     fn=run_example,
        #     cache_examples="lazy",
        # )

        # events
        run_btn.click(fn=local_get_reconstructed_scene,
                      inputs=[inputfiles, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name],
                      outputs=[outmodel])

demo.launch(show_error=True, share=None, server_name=None, server_port=None)
shutil.rmtree(tmpdirname)