File size: 18,877 Bytes
106aab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import asyncio
import os
import json
from typing import List, Dict, Any, Union
from contextlib import AsyncExitStack

import gradio as gr
from gradio.components.chatbot import ChatMessage
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from mcp.client.sse import sse_client
from anthropic import Anthropic
from datasets import load_dataset
import pandas as pd

loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)

class MCPClientWrapper:
    def __init__(self):
        self.session = None
        self.exit_stack = None
        self.anthropic = None
        self.tools = []
        self.dataset = None
        self.validation_results = []
    
    def set_api_key(self, api_key: str) -> str:
        """Set the Anthropic API key and initialize the client"""
        if not api_key or not api_key.strip():
            return "Please enter a valid Anthropic API key"
        
        try:
            self.anthropic = Anthropic(api_key=api_key.strip())
            return "API key set successfully βœ…"
        except Exception as e:
            return f"Failed to set API key: {str(e)}"
    
    def connect(self, server_input: str) -> str:
        if not self.anthropic:
            return "Please set your Anthropic API key first"
        return loop.run_until_complete(self._connect(server_input))
    
    async def _connect(self, server_input: str) -> str:
        if self.exit_stack:
            await self.exit_stack.aclose()
        
        self.exit_stack = AsyncExitStack()
        
        try:
            # Check if input is a URL (starts with http:// or https://)
            if server_input.startswith(('http://', 'https://')):
                # Connect via SSE
                read, write = await self.exit_stack.enter_async_context(
                    sse_client(server_input)
                )
                connection_type = "SSE URL"
            else:
                # Connect via stdio (local file)
                is_python = server_input.endswith('.py')
                command = "python" if is_python else "node"
                
                server_params = StdioServerParameters(
                    command=command,
                    args=[server_input],
                    env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"}
                )
                
                read, write = await self.exit_stack.enter_async_context(
                    stdio_client(server_params)
                )
                connection_type = "Local script"
            
            self.session = await self.exit_stack.enter_async_context(
                ClientSession(read, write)
            )
            await self.session.initialize()
            
            response = await self.session.list_tools()
            self.tools = [{ 
                "name": tool.name,
                "description": tool.description,
                "input_schema": tool.inputSchema
            } for tool in response.tools]
            
            tool_names = [tool["name"] for tool in self.tools]
            return f"Connected to MCP server via {connection_type}. Available tools: {', '.join(tool_names)}"
            
        except Exception as e:
            return f"Connection failed: {str(e)}"
    
    def load_dataset(self) -> tuple:
        """Load the TAAIC Phase1 validation dataset"""
        try:
            self.dataset = load_dataset("aitxchallenge/Phase1_Model_Validator", split="train")
            dataset_info = f"Dataset loaded successfully! {len(self.dataset)} validation cases available."
            
            # Create a preview of the dataset
            df = pd.DataFrame(self.dataset)
            preview = df.head().to_string()
            
            return (
                dataset_info,
                gr.Button("πŸ” Validate", interactive=True),
                gr.Textbox(value=f"Dataset Preview:\n{preview}", visible=True)
            )
        except Exception as e:
            return (
                f"Failed to load dataset: {str(e)}",
                gr.Button("πŸ“₯ Load Dataset", interactive=True),
                gr.Textbox(visible=False)
            )
    
    def validate_tools(self) -> str:
        """Run validation on all dataset cases"""
        if not self.anthropic:
            return "Please set your Anthropic API key first."
            
        if not self.dataset:
            return "Please load the dataset first."
        
        if not self.session:
            return "Please connect to an MCP server first."
        
        return loop.run_until_complete(self._run_validation())
    
    async def _run_validation(self) -> str:
        """Async validation runner"""
        self.validation_results = []
        total_cases = len(self.dataset)
        passed = 0
        failed = 0
        
        for i, case in enumerate(self.dataset):
            try:
                # Extract test case information
                query = case.get('query', case.get('question', ''))
                expected_output = case.get('expected_output', case.get('expected', ''))
                test_id = case.get('id', f'test_{i}')
                
                # Run the query through the MCP tools
                result = await self._validate_single_case(query, expected_output, test_id)
                self.validation_results.append(result)
                
                if result['passed']:
                    passed += 1
                else:
                    failed += 1
                    
            except Exception as e:
                failed += 1
                self.validation_results.append({
                    'test_id': test_id,
                    'query': query,
                    'error': str(e),
                    'passed': False
                })
        
        # Generate validation report
        report = f"""
VALIDATION COMPLETE
==================
Total Cases: {total_cases}
Passed: {passed}
Failed: {failed}
Success Rate: {(passed/total_cases)*100:.1f}%

DETAILED RESULTS:
"""
        
        for result in self.validation_results:
            status = "βœ… PASS" if result['passed'] else "❌ FAIL"
            report += f"\n{status} [{result['test_id']}] {result['query'][:50]}..."
            if not result['passed'] and 'error' in result:
                report += f"\n   Error: {result['error']}"
        
        return report
    
    async def _validate_single_case(self, query: str, expected_output: str, test_id: str) -> Dict[str, Any]:
        """Validate a single test case"""
        try:
            # Send query to Claude with MCP tools
            claude_messages = [{"role": "user", "content": query}]
            
            response = self.anthropic.messages.create(
                model="claude-3-5-sonnet-20241022",
                max_tokens=1000,
                messages=claude_messages,
                tools=self.tools
            )
            
            # Process tool calls if any
            actual_output = ""
            for content in response.content:
                if content.type == 'text':
                    actual_output += content.text
                elif content.type == 'tool_use':
                    tool_result = await self.session.call_tool(content.name, content.input)
                    actual_output += str(tool_result.content)
            
            # Simple validation logic - you may want to customize this
            passed = self._validate_output(actual_output, expected_output)
            
            return {
                'test_id': test_id,
                'query': query,
                'expected': expected_output,
                'actual': actual_output,
                'passed': passed
            }
            
        except Exception as e:
            return {
                'test_id': test_id,
                'query': query,
                'error': str(e),
                'passed': False
            }
    
    def _validate_output(self, actual: str, expected: str) -> bool:
        """Basic output validation - customize based on your needs"""
        # This is a simple implementation - you may want more sophisticated validation
        if not expected:
            return True  # If no expected output specified, consider it passed
        
        # You can implement more sophisticated matching here
        # For now, using simple substring matching
        return expected.lower() in actual.lower()
    
    def process_message(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]) -> tuple:
        if not self.anthropic:
            return history + [
                {"role": "user", "content": message}, 
                {"role": "assistant", "content": "Please set your Anthropic API key first."}
            ], gr.Textbox(value="")
            
        if not self.session:
            return history + [
                {"role": "user", "content": message}, 
                {"role": "assistant", "content": "Please connect to an MCP server first."}
            ], gr.Textbox(value="")
        
        new_messages = loop.run_until_complete(self._process_query(message, history))
        return history + [{"role": "user", "content": message}] + new_messages, gr.Textbox(value="")
    
    async def _process_query(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]):
        claude_messages = []
        for msg in history:
            if isinstance(msg, ChatMessage):
                role, content = msg.role, msg.content
            else:
                role, content = msg.get("role"), msg.get("content")
            
            if role in ["user", "assistant", "system"]:
                claude_messages.append({"role": role, "content": content})
        
        claude_messages.append({"role": "user", "content": message})
        
        response = self.anthropic.messages.create(
            model="claude-3-5-sonnet-20241022",
            max_tokens=1000,
            messages=claude_messages,
            tools=self.tools
        )

        result_messages = []
        
        for content in response.content:
            if content.type == 'text':
                result_messages.append({
                    "role": "assistant", 
                    "content": content.text
                })
                
            elif content.type == 'tool_use':
                tool_name = content.name
                tool_args = content.input
                
                result_messages.append({
                    "role": "assistant",
                    "content": f"I'll only use the {tool_name} tool to help answer your question.",
                    "metadata": {
                        "title": f"Using tool: {tool_name}",
                        "log": f"Parameters: {json.dumps(tool_args, ensure_ascii=True)}",
                        "status": "pending",
                        "id": f"tool_call_{tool_name}"
                    }
                })
                
                result_messages.append({
                    "role": "assistant",
                    "content": "```json\n" + json.dumps(tool_args, indent=2, ensure_ascii=True) + "\n```",
                    "metadata": {
                        "parent_id": f"tool_call_{tool_name}",
                        "id": f"params_{tool_name}",
                        "title": "Tool Parameters"
                    }
                })
                
                try:
                    result = await self.session.call_tool(tool_name, tool_args)
                    
                    if result_messages and "metadata" in result_messages[-2]:
                        result_messages[-2]["metadata"]["status"] = "done"
                    
                    result_messages.append({
                        "role": "assistant",
                        "content": "Here are the results from the tool:",
                        "metadata": {
                            "title": f"Tool Result for {tool_name}",
                            "status": "done",
                            "id": f"result_{tool_name}"
                        }
                    })
                    
                    result_content = result.content
                    if isinstance(result_content, list):
                        result_content = "\n".join(str(item) for item in result_content)
                    
                    try:
                        result_json = json.loads(result_content)
                        if isinstance(result_json, dict) and "type" in result_json:
                            if result_json["type"] == "image" and "url" in result_json:
                                result_messages.append({
                                    "role": "assistant",
                                    "content": {"path": result_json["url"], "alt_text": result_json.get("message", "Generated image")},
                                    "metadata": {
                                        "parent_id": f"result_{tool_name}",
                                        "id": f"image_{tool_name}",
                                        "title": "Generated Image"
                                    }
                                })
                            else:
                                result_messages.append({
                                    "role": "assistant",
                                    "content": "```\n" + result_content + "\n```",
                                    "metadata": {
                                        "parent_id": f"result_{tool_name}",
                                        "id": f"raw_result_{tool_name}",
                                        "title": "Raw Output"
                                    }
                                })
                    except:
                        result_messages.append({
                            "role": "assistant",
                            "content": "```\n" + result_content + "\n```",
                            "metadata": {
                                "parent_id": f"result_{tool_name}",
                                "id": f"raw_result_{tool_name}",
                                "title": "Raw Output"
                            }
                        })
                    
                    claude_messages.append({"role": "user", "content": f"Tool result for {tool_name}: {result_content}"})
                    next_response = self.anthropic.messages.create(
                        model="claude-3-5-sonnet-20241022",
                        max_tokens=1000,
                        messages=claude_messages,
                    )
                    
                    if next_response.content and next_response.content[0].type == 'text':
                        result_messages.append({
                            "role": "assistant",
                            "content": next_response.content[0].text
                        })
                
                except Exception as e:
                    result_messages.append({
                        "role": "assistant",
                        "content": f"Error calling tool {tool_name}: {str(e)}",
                        "metadata": {
                            "title": f"Error - {tool_name}",
                            "status": "error",
                            "id": f"error_{tool_name}"
                        }
                    })

        return result_messages

client = MCPClientWrapper()

def gradio_interface():
    with gr.Blocks(title="TAAIC Tool Validation") as demo:
        gr.Markdown("# TAAIC Tool Validation")
        gr.Markdown("Connect your Gradio MCP Tool for validation for the TAAIC challenge.")

        # API Key input section
        with gr.Row(equal_height=True):
            with gr.Column(scale=4):
                api_key_input = gr.Textbox(
                    label="Anthropic API Key",
                    placeholder="Enter your Anthropic API key (sk-ant-...)",
                    type="password"
                )
            with gr.Column(scale=1):
                api_key_btn = gr.Button("Set API Key")
        
        api_key_status = gr.Textbox(label="API Key Status", interactive=False)
        
        # MCP Server connection section
        with gr.Row(equal_height=True):
            with gr.Column(scale=4):
                server_input = gr.Textbox(
                    label="MCP Server URL or Script Path",
                    placeholder="Enter URL (e.g., https://cyrilzakka-clinical-trials.hf.space/gradio_api/mcp/sse) or local script path (e.g., weather.py)",
                    value="https://cyrilzakka-clinical-trials.hf.space/gradio_api/mcp/sse"
                )
            with gr.Column(scale=1):
                connect_btn = gr.Button("Connect")
        
        status = gr.Textbox(label="Connection Status", interactive=False)
        
        # Dataset loading section
        with gr.Row(equal_height=True):
            with gr.Column(scale=3):
                dataset_status = gr.Textbox(
                    label="Dataset Status",
                    value="Click 'Load Dataset' to load validation cases",
                    interactive=False
                )
            with gr.Column(scale=1):
                dataset_btn = gr.Button("πŸ“₯ Load Dataset", interactive=True)
        
        dataset_preview = gr.Textbox(
            label="Dataset Preview",
            visible=False,
            interactive=False,
            max_lines=10
        )
        
        # Validation results
        validation_results = gr.Textbox(
            label="Validation Results",
            visible=False,
            interactive=False,
            max_lines=20
        )
        
        # Event handlers
        api_key_btn.click(client.set_api_key, inputs=api_key_input, outputs=api_key_status)
        connect_btn.click(client.connect, inputs=server_input, outputs=status)
        
        dataset_btn.click(
            client.load_dataset, 
            outputs=[dataset_status, dataset_btn, dataset_preview]
        )
        
        def run_validation():
            results = client.validate_tools()
            return gr.Textbox(value=results, visible=True)
        
        dataset_btn.click(
            lambda: client.validate_tools() if client.dataset else "Please load dataset first.",
            outputs=validation_results,
            show_progress=True
        ).then(
            lambda: gr.Textbox(visible=True),
            outputs=validation_results
        )
        
        # msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
        # clear_btn.click(lambda: [], None, chatbot)
        
    return demo

if __name__ == "__main__":
    interface = gradio_interface()
    interface.launch(debug=True)