File size: 13,701 Bytes
043af41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335a8a6
 
 
 
043af41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# import system libs
import os
import time
import shutil
import itertools

# import data handling tools
import cv2
import numpy as np
import pandas as pd
import seaborn as sns
sns.set_style('darkgrid')
import matplotlib.pyplot as plt
import gradio as gr

# import Deep learning Libraries
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Activation, Dropout, BatchNormalization
from tensorflow.keras.models import Model, load_model, Sequential
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.model_selection import train_test_split
from tensorflow.keras.optimizers import Adam, Adamax
from tensorflow.keras import regularizers
from tensorflow.keras.metrics import categorical_crossentropy
from tensorflow.keras.utils import to_categorical
from PIL import Image
from sklearn.model_selection import train_test_split


# Ignore Warnings
import warnings
warnings.filterwarnings("ignore")
print ('modules loaded')
#---Training-----------------------------
#  ! pip install -q kaggle
# from google.colab import files

# files.upload()
# ! mkdir ~/.kaggle

# ! cp kaggle.json ~/.kaggle/
# ! chmod 600 ~/.kaggle/kaggle.json
# ! kaggle datasets list
# !kaggle datasets download -d kmader/skin-cancer-mnist-ham10000
# ! mkdir kaggle
# ! unzip skin-cancer-mnist-ham10000.zip -d kaggle
# data_dir = '/content/kaggle/hmnist_28_28_RGB.csv'
# data = pd.read_csv(data_dir)
# print(data.shape)
# data.head()

# Label = data["label"]
# Data = data.drop(columns=["label"])
# print(data.shape)
# Data.head()

# from imblearn.over_sampling import RandomOverSampler

# oversample = RandomOverSampler()
# Data, Label  = oversample.fit_resample(Data, Label)
# print(Data.shape)
# Data = np.array(Data).reshape(-1,28, 28,3)
# print('Shape of Data :', Data.shape)

# Label = np.array(Label)
# Label
# classes = {4: ('nv', ' melanocytic nevi'),
#            6: ('mel', 'melanoma'),
#            2 :('bkl', 'benign keratosis-like lesions'),
#            1:('bcc' , ' basal cell carcinoma'),
#            5: ('vasc', ' pyogenic granulomas and hemorrhage'),
#            0: ('akiec', 'Actinic keratoses and intraepithelial carcinomae'),
#            3: ('df', 'dermatofibroma')}



# X_train , X_test , y_train , y_test = train_test_split(Data , Label , test_size = 0.25 , random_state = 49)

# print(f'X_train shape: {X_train.shape}\nX_test shape: {X_test.shape}')
# print(f'y_train shape: {y_train.shape}\ny_test shape: {y_test.shape}')

# y_train = to_categorical(y_train)
# y_test = to_categorical(y_test)

# datagen = ImageDataGenerator(rescale=(1./255)
#                              ,rotation_range=10
#                              ,zoom_range = 0.1
#                              ,width_shift_range=0.1
#                              ,height_shift_range=0.1)

# testgen = ImageDataGenerator(rescale=(1./255))

# from keras.callbacks import ReduceLROnPlateau

# learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy'
#                                             , patience = 2
#                                             , verbose=1
#                                             ,factor=0.5
#                                             , min_lr=0.00001)

# model = keras.models.Sequential()

# # Create Model Structure
# model.add(keras.layers.Input(shape=[28, 28, 3]))
# model.add(keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal'))
# model.add(keras.layers.MaxPooling2D())
# model.add(keras.layers.BatchNormalization())

# model.add(keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal'))
# model.add(keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal'))
# model.add(keras.layers.MaxPooling2D())
# model.add(keras.layers.BatchNormalization())

# model.add(keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal'))
# model.add(keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal'))
# model.add(keras.layers.MaxPooling2D())
# model.add(keras.layers.BatchNormalization())

# model.add(keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal'))
# model.add(keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal'))
# model.add(keras.layers.MaxPooling2D())

# model.add(keras.layers.Flatten())

# model.add(keras.layers.Dropout(rate=0.2))
# model.add(keras.layers.Dense(units=256, activation='relu', kernel_initializer='he_normal'))
# model.add(keras.layers.BatchNormalization())

# model.add(keras.layers.Dense(units=128, activation='relu', kernel_initializer='he_normal'))
# model.add(keras.layers.BatchNormalization())

# model.add(keras.layers.Dense(units=64, activation='relu', kernel_initializer='he_normal'))
# model.add(keras.layers.BatchNormalization())

# model.add(keras.layers.Dense(units=32, activation='relu', kernel_initializer='he_normal', kernel_regularizer=keras.regularizers.L1L2()))
# model.add(keras.layers.BatchNormalization())

# model.add(keras.layers.Dense(units=7, activation='softmax', kernel_initializer='glorot_uniform', name='classifier'))

# model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy', metrics= ['accuracy'])

# model.summary()

# history = model.fit(X_train ,
#                     y_train ,
#                     epochs=25 ,
#                     batch_size=128,
#                     validation_data=(X_test , y_test) ,
#                     callbacks=[learning_rate_reduction])

# def plot_training(hist):
#     tr_acc = hist.history['accuracy']
#     tr_loss = hist.history['loss']
#     val_acc = hist.history['val_accuracy']
#     val_loss = hist.history['val_loss']
#     index_loss = np.argmin(val_loss)
#     val_lowest = val_loss[index_loss]
#     index_acc = np.argmax(val_acc)
#     acc_highest = val_acc[index_acc]

#     plt.figure(figsize= (20, 8))
#     plt.style.use('fivethirtyeight')
#     Epochs = [i+1 for i in range(len(tr_acc))]
#     loss_label = f'best epoch= {str(index_loss + 1)}'
#     acc_label = f'best epoch= {str(index_acc + 1)}'

#     plt.subplot(1, 2, 1)
#     plt.plot(Epochs, tr_loss, 'r', label= 'Training loss')
#     plt.plot(Epochs, val_loss, 'g', label= 'Validation loss')
#     plt.scatter(index_loss + 1, val_lowest, s= 150, c= 'blue', label= loss_label)
#     plt.title('Training and Validation Loss')
#     plt.xlabel('Epochs')
#     plt.ylabel('Loss')
#     plt.legend()

#     plt.subplot(1, 2, 2)
#     plt.plot(Epochs, tr_acc, 'r', label= 'Training Accuracy')
#     plt.plot(Epochs, val_acc, 'g', label= 'Validation Accuracy')
#     plt.scatter(index_acc + 1 , acc_highest, s= 150, c= 'blue', label= acc_label)
#     plt.title('Training and Validation Accuracy')
#     plt.xlabel('Epochs')
#     plt.ylabel('Accuracy')
#     plt.legend()

#     plt.tight_layout
#     plt.show()

#     plot_training(history)

#     train_score = model.evaluate(X_train, y_train, verbose= 1)
# test_score = model.evaluate(X_test, y_test, verbose= 1)

# print("Train Loss: ", train_score[0])
# print("Train Accuracy: ", train_score[1])
# print('-' * 20)
# print("Test Loss: ", test_score[0])
# print("Test Accuracy: ", test_score[1])

# y_true = np.array(y_test)
# y_pred = model.predict(X_test)

# y_pred = np.argmax(y_pred , axis=1)
# y_true = np.argmax(y_true , axis=1)

# classes_labels = []
# for key in classes.keys():
#     classes_labels.append(key)

# print(classes_labels)

# # Confusion matrix
# cm = cm = confusion_matrix(y_true, y_pred, labels=classes_labels)

# plt.figure(figsize= (10, 10))
# plt.imshow(cm, interpolation= 'nearest', cmap= plt.cm.Blues)
# plt.title('Confusion Matrix')
# plt.colorbar()

# tick_marks = np.arange(len(classes))
# plt.xticks(tick_marks, classes, rotation= 45)
# plt.yticks(tick_marks, classes)


# thresh = cm.max() / 2.
# for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
#     plt.text(j, i, cm[i, j], horizontalalignment= 'center', color= 'white' if cm[i, j] > thresh else 'black')

# plt.tight_layout()
# plt.ylabel('True Label')
# plt.xlabel('Predicted Label')

# plt.show()

# #Save the model
# model.save('skin_cancer_model.h5')

# converter = tf.lite.TFLiteConverter.from_keras_model(model)
# tflite_model = converter.convert()

# print("model converted")

# # Save the model.
# with open('skin_cancer_model.tflite', 'wb') as f:
#     f.write(tflite_model)

#Training End------------------------------------------

skin_classes = {4: ('nv', ' melanocytic nevi'),
           6: ('mel', 'melanoma'),
           2 :('bkl', 'benign keratosis-like lesions'), 
           1:('bcc' , ' basal cell carcinoma'),
           5: ('vasc', ' pyogenic granulomas and hemorrhage'),
           0: ('akiec', 'Actinic keratoses and intraepithelial carcinomae'),
           3: ('df', 'dermatofibroma')}

#Use saved model
loaded_model = tf.keras.models.load_model('skin_cancer_model.h5', compile=False)
loaded_model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy', metrics= ['accuracy'])

def predict_digit(image):
    if image is not None:
        
        #Use saved model
        loaded_model = tf.keras.models.load_model('skin_cancer_model.h5', compile=False)
        loaded_model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy', metrics= ['accuracy'])
        img = image.resize((28, 28))
        img_array = tf.keras.preprocessing.image.img_to_array(img)
        img_array = tf.expand_dims(img_array, 0)
        print(img_array)


        predictions = loaded_model.predict(img_array)
        print(predictions)
        #class_labels = [] # data classes
        score = tf.nn.softmax(predictions[0])*100


        print(score)
        print(skin_classes[np.argmax(score)])
        simple = pd.DataFrame(
        {
        "skin condition": ["akiec", "bcc", "bkl", "df", "nv", "vasc", "mel"],
        "probability": score, 
        "full skin condition": [ 'Actinic keratoses', 
              ' basal cell carcinoma',
              'benign keratosis-like lesions',
              'dermatofibroma',
              ' melanocytic nevi',
              ' pyogenic granulomas and hemorrhage',
              'melanoma'],
        }
        )




        predicted_skin_condition=skin_classes[np.argmax(score)][1]+"   ("+ skin_classes[np.argmax(score)][0]+")"
        return  predicted_skin_condition, gr.BarPlot(
            simple,
            x="skin condition",
            y="probability",
            x_title="Skin Condition",
            y_title="Classification Probabilities",
            title="Skin Cancer Classification Probability",
            tooltip=["full skin condition", "probability"],
            vertical=False,
            y_lim=[0, 100],
            color="full skin condition"
        )
        
    else:
        simple_empty = pd.DataFrame(
        {
        "skin condition": ["akiec", "bcc", "bkl", "df", "nv", "vasc", "mel"],
        "probability": [0,0,0,0,0,0,0],
        "full skin condition": [ 'Actinic keratoses', 
              ' basal cell carcinoma',
              'benign keratosis-like lesions',
              'dermatofibroma',
              ' melanocytic nevi',
              ' pyogenic granulomas and hemorrhage',
              'melanoma'],
        }
        )

        return " ", gr.BarPlot(
            simple_empty,
            x="skin condition",
            y="probability",
            x_title="Digits",
            y_title="Identification Probabilities",
            title="Identification Probability",
            tooltip=["full skin condition", "probability"],
            vertical=False,
            y_lim=[0, 100],
            
        )
    
skin_images = [
    ("skin_image/mel.jpg",'mel'),
    ("skin_image/nv3.jpg",'nv'),
    ("skin_image/bkl.jpg",'bkl'),
    ("skin_image/df.jpg",'df'),
    ("skin_image/akiec.jpg",'akiec'),
    ("skin_image/bcc.jpg",'bcc'),
    ("skin_image/vasc.jpg",'vasc'),
    ("skin_image/nv2.jpg",'nv'),
    ("skin_image/akiec2.jpg",'akiec'),
    ("skin_image/bkl2.jpg",'bkl'),
    ("skin_image/nv.jpg",'nv'),
    
    ] 

def image_from_gallary(evt: gr.SelectData):
    print(evt.index)
    return skin_images[evt.index][0]



css='''
#title_head {
    text-align: center;
    font-weight: bold;
    font-size: 30px;
}
#name_head{
text-align: center;
}
'''

with gr.Blocks(css=css) as demo:
   
    with gr.Row():
        with gr.Column():
            gr.Markdown("<h1>Skin Cancer Classifier</h1>", elem_id='title_head')
            gr.Markdown("<h2>Cyperts Project</h2>", elem_id="name_head")
    with gr.Row():
        with gr.Column():
            with gr.Row():
                gr.Markdown("<h3>Browse or Select from given Image</h3>", elem_id='info')
                img_upload=gr.Image(type="pil", height=200, width=300)
            with gr.Row():
                clear=gr.ClearButton(img_upload)
                btn=gr.Button("Identify")
                    
        with gr.Column():
            gry=gr.Gallery(value=skin_images, columns=5, show_label=False, allow_preview=False)
    with gr.Row():
        with gr.Column():
            gr.Markdown("Most probable skin condition")
            label=gr.Label("")
    with gr.Row():
        with gr.Column():
            gr.Markdown("Other possible values")
            bar = gr.BarPlot()
    
    
            
    btn.click(predict_digit,inputs=[img_upload],outputs=[label,bar])
    gry.select(image_from_gallary, outputs=img_upload)

           
        
    
demo.launch(debug=True)