File size: 6,534 Bytes
dc1ad90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from torch.utils.data import Dataset
import os
import json
import numpy as np
import torch
import imageio
import math
import cv2
from torchvision import transforms

def cartesian_to_spherical(xyz):
    ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
    xy = xyz[:,0]**2 + xyz[:,1]**2
    z = np.sqrt(xy + xyz[:,2]**2)
    theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
    #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
    azimuth = np.arctan2(xyz[:,1], xyz[:,0])
    return np.array([theta, azimuth, z])


def get_T(T_target, T_cond):
    theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :])
    theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :])
    
    d_theta = theta_target - theta_cond
    d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
    d_z = z_target - z_cond
    
    d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
    return d_T

def get_spherical(T_target, T_cond):
    theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :])
    theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :])
    
    d_theta = theta_target - theta_cond
    d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
    d_z = z_target - z_cond
    
    d_T = torch.tensor([math.degrees(d_theta.item()), math.degrees(d_azimuth.item()), d_z.item()])
    return d_T

class RTMV(Dataset):
    def __init__(self, root_dir='datasets/RTMV/google_scanned',\
                 first_K=64, resolution=256, load_target=False):
        self.root_dir = root_dir
        self.scene_list = sorted(next(os.walk(root_dir))[1])
        self.resolution = resolution
        self.first_K = first_K
        self.load_target = load_target

    def __len__(self):
        return len(self.scene_list)

    def __getitem__(self, idx):
        scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
        with open(os.path.join(scene_dir, 'transforms.json'), "r") as f:
            meta = json.load(f)
        imgs = []
        poses = []
        for i_img in range(self.first_K):
            meta_img = meta['frames'][i_img]

            if i_img == 0 or self.load_target:
                img_path = os.path.join(scene_dir, meta_img['file_path'])
                img = imageio.imread(img_path)
                img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
                imgs.append(img)
            
            c2w = meta_img['transform_matrix']
            poses.append(c2w)
            
        imgs = (np.array(imgs) / 255.).astype(np.float32)  # (RGBA) imgs
        imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
        imgs = imgs * 2 - 1. # convert to stable diffusion range
        poses = torch.tensor(np.array(poses).astype(np.float32))
        return imgs, poses
                
    def blend_rgba(self, img):
        img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:])  # blend A to RGB
        return img
            

class GSO(Dataset):
    def __init__(self, root_dir='datasets/GoogleScannedObjects',\
                 split='val', first_K=5, resolution=256, load_target=False, name='render_mvs'):
        self.root_dir = root_dir
        with open(os.path.join(root_dir, '%s.json' % split), "r") as f:
            self.scene_list = json.load(f)
        self.resolution = resolution
        self.first_K = first_K
        self.load_target = load_target
        self.name = name

    def __len__(self):
        return len(self.scene_list)

    def __getitem__(self, idx):
        scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
        with open(os.path.join(scene_dir, 'transforms_%s.json' % self.name), "r") as f:
            meta = json.load(f)
        imgs = []
        poses = []
        for i_img in range(self.first_K):
            meta_img = meta['frames'][i_img]

            if i_img == 0 or self.load_target:
                img_path = os.path.join(scene_dir, meta_img['file_path'])
                img = imageio.imread(img_path)
                img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
                imgs.append(img)
            
            c2w = meta_img['transform_matrix']
            poses.append(c2w)
            
        imgs = (np.array(imgs) / 255.).astype(np.float32)  # (RGBA) imgs
        mask = imgs[:, :, :, -1]
        imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
        imgs = imgs * 2 - 1. # convert to stable diffusion range
        poses = torch.tensor(np.array(poses).astype(np.float32))
        return imgs, poses
                
    def blend_rgba(self, img):
        img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:])  # blend A to RGB
        return img
             
class WILD(Dataset):
    def __init__(self, root_dir='data/nerf_wild',\
                 first_K=33, resolution=256, load_target=False):
        self.root_dir = root_dir
        self.scene_list = sorted(next(os.walk(root_dir))[1])
        self.resolution = resolution
        self.first_K = first_K
        self.load_target = load_target

    def __len__(self):
        return len(self.scene_list)

    def __getitem__(self, idx):
        scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
        with open(os.path.join(scene_dir, 'transforms_train.json'), "r") as f:
            meta = json.load(f)
        imgs = []
        poses = []
        for i_img in range(self.first_K):
            meta_img = meta['frames'][i_img]

            if i_img == 0 or self.load_target:
                img_path = os.path.join(scene_dir, meta_img['file_path'])
                img = imageio.imread(img_path + '.png')
                img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
                imgs.append(img)
            
            c2w = meta_img['transform_matrix']
            poses.append(c2w)
            
        imgs = (np.array(imgs) / 255.).astype(np.float32)  # (RGBA) imgs
        imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
        imgs = imgs * 2 - 1. # convert to stable diffusion range
        poses = torch.tensor(np.array(poses).astype(np.float32))
        return imgs, poses
                
    def blend_rgba(self, img):
        img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:])  # blend A to RGB
        return img