Spaces:
Build error
Build error
File size: 10,549 Bytes
dc1ad90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# based on https://github.com/universome/fvd-comparison/blob/master/compare_models.py; huge thanks!
import os
import numpy as np
import io
import re
import requests
import html
import hashlib
import urllib
import urllib.request
import scipy.linalg
import multiprocessing as mp
import glob
from tqdm import tqdm
from typing import Any, List, Tuple, Union, Dict, Callable
from torchvision.io import read_video
import torch; torch.set_grad_enabled(False)
from einops import rearrange
from nitro.util import isvideo
def compute_frechet_distance(mu_sample,sigma_sample,mu_ref,sigma_ref) -> float:
print('Calculate frechet distance...')
m = np.square(mu_sample - mu_ref).sum()
s, _ = scipy.linalg.sqrtm(np.dot(sigma_sample, sigma_ref), disp=False) # pylint: disable=no-member
fid = np.real(m + np.trace(sigma_sample + sigma_ref - s * 2))
return float(fid)
def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
mu = feats.mean(axis=0) # [d]
sigma = np.cov(feats, rowvar=False) # [d, d]
return mu, sigma
def open_url(url: str, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False) -> Any:
"""Download the given URL and return a binary-mode file object to access the data."""
assert num_attempts >= 1
# Doesn't look like an URL scheme so interpret it as a local filename.
if not re.match('^[a-z]+://', url):
return url if return_filename else open(url, "rb")
# Handle file URLs. This code handles unusual file:// patterns that
# arise on Windows:
#
# file:///c:/foo.txt
#
# which would translate to a local '/c:/foo.txt' filename that's
# invalid. Drop the forward slash for such pathnames.
#
# If you touch this code path, you should test it on both Linux and
# Windows.
#
# Some internet resources suggest using urllib.request.url2pathname() but
# but that converts forward slashes to backslashes and this causes
# its own set of problems.
if url.startswith('file://'):
filename = urllib.parse.urlparse(url).path
if re.match(r'^/[a-zA-Z]:', filename):
filename = filename[1:]
return filename if return_filename else open(filename, "rb")
url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
# Download.
url_name = None
url_data = None
with requests.Session() as session:
if verbose:
print("Downloading %s ..." % url, end="", flush=True)
for attempts_left in reversed(range(num_attempts)):
try:
with session.get(url) as res:
res.raise_for_status()
if len(res.content) == 0:
raise IOError("No data received")
if len(res.content) < 8192:
content_str = res.content.decode("utf-8")
if "download_warning" in res.headers.get("Set-Cookie", ""):
links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
if len(links) == 1:
url = requests.compat.urljoin(url, links[0])
raise IOError("Google Drive virus checker nag")
if "Google Drive - Quota exceeded" in content_str:
raise IOError("Google Drive download quota exceeded -- please try again later")
match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
url_name = match[1] if match else url
url_data = res.content
if verbose:
print(" done")
break
except KeyboardInterrupt:
raise
except:
if not attempts_left:
if verbose:
print(" failed")
raise
if verbose:
print(".", end="", flush=True)
# Return data as file object.
assert not return_filename
return io.BytesIO(url_data)
def load_video(ip):
vid, *_ = read_video(ip)
vid = rearrange(vid, 't h w c -> t c h w').to(torch.uint8)
return vid
def get_data_from_str(input_str,nprc = None):
assert os.path.isdir(input_str), f'Specified input folder "{input_str}" is not a directory'
vid_filelist = glob.glob(os.path.join(input_str,'*.mp4'))
print(f'Found {len(vid_filelist)} videos in dir {input_str}')
if nprc is None:
try:
nprc = mp.cpu_count()
except NotImplementedError:
print('WARNING: cpu_count() not avlailable, using only 1 cpu for video loading')
nprc = 1
pool = mp.Pool(processes=nprc)
vids = []
for v in tqdm(pool.imap_unordered(load_video,vid_filelist),total=len(vid_filelist),desc='Loading videos...'):
vids.append(v)
vids = torch.stack(vids,dim=0).float()
return vids
def get_stats(stats):
assert os.path.isfile(stats) and stats.endswith('.npz'), f'no stats found under {stats}'
print(f'Using precomputed statistics under {stats}')
stats = np.load(stats)
stats = {key: stats[key] for key in stats.files}
return stats
@torch.no_grad()
def compute_fvd(ref_input, sample_input, bs=32,
ref_stats=None,
sample_stats=None,
nprc_load=None):
calc_stats = ref_stats is None or sample_stats is None
if calc_stats:
only_ref = sample_stats is not None
only_sample = ref_stats is not None
if isinstance(ref_input,str) and not only_sample:
ref_input = get_data_from_str(ref_input,nprc_load)
if isinstance(sample_input, str) and not only_ref:
sample_input = get_data_from_str(sample_input, nprc_load)
stats = compute_statistics(sample_input,ref_input,
device='cuda' if torch.cuda.is_available() else 'cpu',
bs=bs,
only_ref=only_ref,
only_sample=only_sample)
if only_ref:
stats.update(get_stats(sample_stats))
elif only_sample:
stats.update(get_stats(ref_stats))
else:
stats = get_stats(sample_stats)
stats.update(get_stats(ref_stats))
fvd = compute_frechet_distance(**stats)
return {'FVD' : fvd,}
@torch.no_grad()
def compute_statistics(videos_fake, videos_real, device: str='cuda', bs=32, only_ref=False,only_sample=False) -> Dict:
detector_url = 'https://www.dropbox.com/s/ge9e5ujwgetktms/i3d_torchscript.pt?dl=1'
detector_kwargs = dict(rescale=True, resize=True, return_features=True) # Return raw features before the softmax layer.
with open_url(detector_url, verbose=False) as f:
detector = torch.jit.load(f).eval().to(device)
assert not (only_sample and only_ref), 'only_ref and only_sample arguments are mutually exclusive'
ref_embed, sample_embed = [], []
info = f'Computing I3D activations for FVD score with batch size {bs}'
if only_ref:
if not isvideo(videos_real):
# if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float()
print(videos_real.shape)
if videos_real.shape[0] % bs == 0:
n_secs = videos_real.shape[0] // bs
else:
n_secs = videos_real.shape[0] // bs + 1
videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
for ref_v in tqdm(videos_real, total=len(videos_real),desc=info):
feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
ref_embed.append(feats_ref)
elif only_sample:
if not isvideo(videos_fake):
# if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float()
print(videos_fake.shape)
if videos_fake.shape[0] % bs == 0:
n_secs = videos_fake.shape[0] // bs
else:
n_secs = videos_fake.shape[0] // bs + 1
videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
for sample_v in tqdm(videos_fake, total=len(videos_real),desc=info):
feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
sample_embed.append(feats_sample)
else:
if not isvideo(videos_real):
# if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float()
if not isvideo(videos_fake):
videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float()
if videos_fake.shape[0] % bs == 0:
n_secs = videos_fake.shape[0] // bs
else:
n_secs = videos_fake.shape[0] // bs + 1
videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
videos_fake = torch.tensor_split(videos_fake, n_secs, dim=0)
for ref_v, sample_v in tqdm(zip(videos_real,videos_fake),total=len(videos_fake),desc=info):
# print(ref_v.shape)
# ref_v = torch.nn.functional.interpolate(ref_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False)
# sample_v = torch.nn.functional.interpolate(sample_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False)
feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
sample_embed.append(feats_sample)
ref_embed.append(feats_ref)
out = dict()
if len(sample_embed) > 0:
sample_embed = np.concatenate(sample_embed,axis=0)
mu_sample, sigma_sample = compute_stats(sample_embed)
out.update({'mu_sample': mu_sample,
'sigma_sample': sigma_sample})
if len(ref_embed) > 0:
ref_embed = np.concatenate(ref_embed,axis=0)
mu_ref, sigma_ref = compute_stats(ref_embed)
out.update({'mu_ref': mu_ref,
'sigma_ref': sigma_ref})
return out
|