File size: 2,560 Bytes
dc1ad90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from pathlib import Path
from omegaconf import OmegaConf
import torch
from ldm.util import instantiate_from_config
import logging
from contextlib import contextmanager

from contextlib import contextmanager
import logging

@contextmanager
def all_logging_disabled(highest_level=logging.CRITICAL):
    """
    A context manager that will prevent any logging messages
    triggered during the body from being processed.

    :param highest_level: the maximum logging level in use.
      This would only need to be changed if a custom level greater than CRITICAL
      is defined.

    https://gist.github.com/simon-weber/7853144
    """
    # two kind-of hacks here:
    #    * can't get the highest logging level in effect => delegate to the user
    #    * can't get the current module-level override => use an undocumented
    #       (but non-private!) interface

    previous_level = logging.root.manager.disable

    logging.disable(highest_level)

    try:
        yield
    finally:
        logging.disable(previous_level)

def load_training_dir(train_dir, device, epoch="last"):
    """Load a checkpoint and config from training directory"""
    train_dir = Path(train_dir)
    ckpt = list(train_dir.rglob(f"*{epoch}.ckpt"))
    assert len(ckpt) == 1, f"found {len(ckpt)} matching ckpt files"
    config = list(train_dir.rglob(f"*-project.yaml"))
    assert len(ckpt) > 0, f"didn't find any config in {train_dir}"
    if len(config) > 1:
        print(f"found {len(config)} matching config files")
        config = sorted(config)[-1]
        print(f"selecting {config}")
    else:
        config = config[0]


    config = OmegaConf.load(config)
    return load_model_from_config(config, ckpt[0], device)

def load_model_from_config(config, ckpt, device="cpu", verbose=False):
    """Loads a model from config and a ckpt
    if config is a path will use omegaconf to load
    """
    if isinstance(config, (str, Path)):
        config = OmegaConf.load(config)

    with all_logging_disabled():
        print(f"Loading model from {ckpt}")
        pl_sd = torch.load(ckpt, map_location="cpu")
        global_step = pl_sd["global_step"]
        sd = pl_sd["state_dict"]
        model = instantiate_from_config(config.model)
        m, u = model.load_state_dict(sd, strict=False)
        if len(m) > 0 and verbose:
            print("missing keys:")
            print(m)
        if len(u) > 0 and verbose:
            print("unexpected keys:")
        model.to(device)
        model.eval()
        model.cond_stage_model.device = device
        return model