Spaces:
Build error
Build error
File size: 2,560 Bytes
dc1ad90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
from pathlib import Path
from omegaconf import OmegaConf
import torch
from ldm.util import instantiate_from_config
import logging
from contextlib import contextmanager
from contextlib import contextmanager
import logging
@contextmanager
def all_logging_disabled(highest_level=logging.CRITICAL):
"""
A context manager that will prevent any logging messages
triggered during the body from being processed.
:param highest_level: the maximum logging level in use.
This would only need to be changed if a custom level greater than CRITICAL
is defined.
https://gist.github.com/simon-weber/7853144
"""
# two kind-of hacks here:
# * can't get the highest logging level in effect => delegate to the user
# * can't get the current module-level override => use an undocumented
# (but non-private!) interface
previous_level = logging.root.manager.disable
logging.disable(highest_level)
try:
yield
finally:
logging.disable(previous_level)
def load_training_dir(train_dir, device, epoch="last"):
"""Load a checkpoint and config from training directory"""
train_dir = Path(train_dir)
ckpt = list(train_dir.rglob(f"*{epoch}.ckpt"))
assert len(ckpt) == 1, f"found {len(ckpt)} matching ckpt files"
config = list(train_dir.rglob(f"*-project.yaml"))
assert len(ckpt) > 0, f"didn't find any config in {train_dir}"
if len(config) > 1:
print(f"found {len(config)} matching config files")
config = sorted(config)[-1]
print(f"selecting {config}")
else:
config = config[0]
config = OmegaConf.load(config)
return load_model_from_config(config, ckpt[0], device)
def load_model_from_config(config, ckpt, device="cpu", verbose=False):
"""Loads a model from config and a ckpt
if config is a path will use omegaconf to load
"""
if isinstance(config, (str, Path)):
config = OmegaConf.load(config)
with all_logging_disabled():
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
global_step = pl_sd["global_step"]
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
model.to(device)
model.eval()
model.cond_stage_model.device = device
return model |