Spaces:
Sleeping
Sleeping
File size: 1,683 Bytes
925e416 cbd3f4c 0f34ca3 438fdb3 925e416 2aa7ddb c929fd7 2aa7ddb 438fdb3 0f34ca3 438fdb3 0f34ca3 438fdb3 0f34ca3 48b6db6 0f34ca3 925e416 87806b7 2aa7ddb 925e416 733f064 7862c87 8b60d18 925e416 c71ee2b 733f064 925e416 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
# Imports
import gradio as gr
from sklearn.linear_model import LogisticRegression
import pickle5 as pickle
import re
import string
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
# file name
lr_filename = 'logistic_regression.pkl'
# Load model from pickle file
model = pickle.load(open(lr_filename, 'rb'))
# Process input text, including removing stopwords, converting to lowercase, and removing punctuation
stop = stopwords.words('english')
def process_text(text):
text = [word for word in text.split() if word not in stop]
text = str(text).lower()
text = re.sub(
f"[{re.escape(string.punctuation)}]", " ", text
)
text = " ".join(text.split())
return text
# Vectorize input text
vectorizer = CountVectorizer()
def vectorize_text(text):
text = process_text(text)
text = vectorizer.fit_transform([text])
return text
def predict(text):
text = vectorize_text(text)
prediction = model.predict(text)
return prediction
# Define interface
demo = gr.Interface(fn=predict,
title="Text Classification Demo",
description="This is a demo of a text classification model using Logistic Regression.",
inputs=gr.Textbox(lines=10, placeholder='Input text here...', label="Input Text"),
outputs=gr.Textbox(label="Predicted Label: Other: 1, Healthcare: 2, Technology: 3", lines=2, placeholder='Predicted label will appear here...'),
allow_flagging='never'
)
demo.launch()
|