Spaces:
Runtime error
Runtime error
File size: 5,795 Bytes
65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c 2c8c2f8 65a728c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "e0TsG2okIaQ_",
"outputId": "742d6ccc-8272-4a14-ef1e-c07710e2bfdb"
},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'fastbook'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m/tmp/ipykernel_268282/1933282452.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mfastbook\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mfastbook\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetup_book\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'fastbook'"
]
}
],
"source": [
"import fastbook\n",
"fastbook.setup_book()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import fastai\n",
"from fastai import *\n",
"from fastai.basic_train import *"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import fastai\n",
"from fastai.tabular import *\n",
"from fastai.text import *\n",
"from fastai.vision import *\n",
"from fastai import *"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "h78mKJN7IibS"
},
"outputs": [],
"source": [
"from fastbook import *"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "YaMYb4UiIqNG"
},
"outputs": [],
"source": [
"path = Path('gdrive/MyDrive/anime-image-labeller/safebooru')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "IF8LSz3kI1F1"
},
"outputs": [],
"source": [
"\"\"\"\n",
"Get the prediction labels and their accuracies, then return the results as a dictionary.\n",
"\n",
"[obj] - tensor matrix containing the predicted accuracy given from the model\n",
"[learn] - fastai learner needed to get the labels\n",
"[thresh] - minimum accuracy threshold to returning results\n",
"\"\"\"\n",
"def get_pred_classes(obj, learn, thresh):\n",
" labels = []\n",
" # get list of classes from csv--replace\n",
" with open('classes.txt', 'r') as f:\n",
" for line in f:\n",
" labels.append(line.strip('\\n'))\n",
"\n",
" predictions = {}\n",
" x=0\n",
" for item in obj:\n",
" acc= round(item.item(), 3)\n",
" if acc > thresh:\n",
" predictions[labels[x]] = round(acc, 3)\n",
" x+=1\n",
"\n",
" predictions =sorted(predictions.items(), key=lambda x: x[1], reverse=True)\n",
"\n",
" return predictions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "YaVTkhcDSwGl"
},
"outputs": [],
"source": [
"def get_x(r): return 'images'/r['img_name']\n",
"def get_y(r): return [t for t in r['tags'].split(' ') if t in pop_tags]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "eN0og22RJ0xW"
},
"outputs": [],
"source": [
"learn = load_learner('model-large-40e.pkl')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Q8geXEEmJCVz"
},
"outputs": [],
"source": [
"def predict_single_img(imf, thresh=0.2, learn=learn):\n",
" \n",
" img = PILImage.create(imf)\n",
"\n",
" #img.show() #show image\n",
" _, _, pred_pct = learn.predict(img) #predict while ignoring first 2 array inputs\n",
" img.show() #show image\n",
" return str(get_pred_classes(pred_pct, learn, thresh))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 227
},
"id": "XuwlpTtoKF_G",
"outputId": "2fefdc83-cb6a-472f-99ed-6f1b3c059c24"
},
"outputs": [],
"source": [
"predict_single_img('test/midriff.jpg')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 643
},
"id": "XJsy9FPeG2BI",
"outputId": "9b6125e9-4b16-47e2-c1ad-d8e7caa3c2fa"
},
"outputs": [],
"source": [
"iface = gr.Interface(fn=predict_single_img, \n",
" inputs=[\"image\",\"number\"], \n",
" outputs=\"text\")\n",
"iface.launch()"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "Anime Image Label Inference.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python [conda env:fastai2]",
"language": "python",
"name": "conda-env-fastai2-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|