File size: 10,780 Bytes
981b0ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
from torch import nn
from torch.nn import functional as F
import torch.nn.utils.spectral_norm as SpectralNorm
import random
from .helper_arch import ResTextBlockV2, adaptive_instance_normalization

class SRNet(nn.Module):
    def __init__(self, in_channel=3, dim_channel=256):
        super().__init__()
        self.conv_first_32 = nn.Sequential(
            SpectralNorm(nn.Conv2d(in_channel, dim_channel//4, 3, 1, 1)),
            nn.LeakyReLU(0.2),
        )
        self.conv_first_16 = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel//4, dim_channel//2, 3, 2, 1)),
            nn.LeakyReLU(0.2),
        )
        self.conv_first_8 = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel//2, dim_channel, 3, 2, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )
        self.conv_body_16 = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel+dim_channel//2, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )
        self.conv_body_32 = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel+dim_channel//4, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )

        self.conv_up = nn.Sequential(
            nn.Upsample(scale_factor=2, mode='bilinear'), #64*64*256
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            ResTextBlockV2(dim_channel, dim_channel),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )

        self.conv_final = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel//2, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            nn.Upsample(scale_factor=2, mode='bilinear'), #128*128*256
            SpectralNorm(nn.Conv2d(dim_channel//2, dim_channel//4, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            ResTextBlockV2(dim_channel//4, dim_channel//4),
            SpectralNorm(nn.Conv2d(dim_channel//4, 3, 3, 1, 1)),
            nn.Tanh()
        )

        # self.conv_priorout = nn.Sequential(
        #     SpectralNorm(nn.Conv2d(dim_channel, dim_channel//2, 3, 1, 1)),
        #     nn.LeakyReLU(0.2),
        #     nn.Upsample(scale_factor=2, mode='bilinear'), #128*128*256
        #     SpectralNorm(nn.Conv2d(dim_channel//2, dim_channel//4, 3, 1, 1)),
        #     nn.LeakyReLU(0.2),
        #     ResTextBlockV2(dim_channel//4, dim_channel//4),
        #     SpectralNorm(nn.Conv2d(dim_channel//4, 3, 3, 1, 1)),
        #     nn.Tanh()
        # )

        self.conv_32_scale = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )
        self.conv_32_shift = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )
        self.conv_32_fuse = nn.Sequential(
            ResTextBlockV2(2*dim_channel, dim_channel)
        )

        self.conv_32_to256 = nn.Sequential(
            SpectralNorm(nn.Conv2d(512, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )

        self.conv_64_scale = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )
        self.conv_64_shift = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )
        self.conv_64_fuse = nn.Sequential(
            ResTextBlockV2(2*dim_channel, dim_channel)
        )

    def forward(self, lq, priors64, priors32, locs): #
        # lq_features:b*512*8*512 
        # priors: 8, 16,32,64,128
        # locs: b*32, center+width for 128*2048 0~1
        # locs: b*16, center for 128*2048, 0~2048

        
        single_sr = True

        
        lq_f_32 = self.conv_first_32(lq)
        lq_f_16 = self.conv_first_16(lq_f_32)
        lq_f_8 = self.conv_first_8(lq_f_16)

        sq_f_16 = self.conv_body_16(torch.cat([F.interpolate(lq_f_8, scale_factor=2, mode='bilinear'), lq_f_16], dim=1))
        sq_f_32 = self.conv_body_32(torch.cat([F.interpolate(sq_f_16, scale_factor=2, mode='bilinear'), lq_f_32], dim=1)) # 256*32*32


        if priors32 is not None:
            sq_f_32_ori = sq_f_32.clone()
            # sq_f_32_res = sq_f_32.clone().detach()*0
            prior_32_align = torch.zeros_like(sq_f_32_ori)
            prior_32_mask = torch.zeros((sq_f_32_ori.size(0), 1, sq_f_32_ori.size(2), sq_f_32_ori.size(3)), dtype=sq_f_32_ori.dtype, layout=sq_f_32_ori.layout, device=sq_f_32_ori.device)
            for b, p_32 in enumerate(priors32): #512*32*32, different batch
                p_32_256 = self.conv_32_to256(p_32.clone()) 
                for c in range(p_32_256.size(0)): #
                    center = (locs[b][c].detach()/4.0).int() #
                    width = 16

                    if center < width:
                        x1 = 0 #lq feature left
                        y1 = max(16 - center, 0)
                    else:
                        x1 = center - width
                        y1 = max(16 - width, 0)
                        # y1 = 16 - width
                    if center + width > sq_f_32.size(-1):
                        x2 = sq_f_32.size(-1) #lq feature right
                    else:
                        x2 = center + width
                    y2 = y1 + (x2 - x1)

                    '''
                    center align
                    '''
                    # y1 = 16 - torch.div(x2-x1, 2, rounding_mode='trunc')
                    y2 = y1 + x2 - x1

                    if single_sr:
                        char_prior_f = p_32_256[c:c+1, :, :, y1:y2].clone() #prior
                        char_lq_f = sq_f_32[b:b+1, :, :, x1:x2].clone()
                        adain_prior_f = adaptive_instance_normalization(char_prior_f, char_lq_f)
                        fuse_32_prior = self.conv_32_fuse(torch.cat((adain_prior_f, char_lq_f), dim=1))
                        scale = self.conv_32_scale(fuse_32_prior)
                        shift = self.conv_32_shift(fuse_32_prior)
                        prior_32_align[b, :, :, x1:x2] = prior_32_align[b, :, :, x1:x2] + sq_f_32[b, :, :, x1:x2].clone() * scale[0,...] + shift[0,...]
                    else:
                        prior_32_align[b, :, :, x1:x2] = prior_32_align[b, :, :, x1:x2] + p_32_256[c:c+1, :, :, y1:y2].clone()
            #         prior_32_mask[b, :, :, x1:x2] += 1.0
            
            # prior_32_mask[prior_32_mask<2]=1.0
            # prior_32_align = prior_32_align / prior_32_mask.repeat(1, prior_32_align.size(1), 1, 1)

            if single_sr:
                sq_pf_32_out = sq_f_32_ori + prior_32_align
            else:
                sq_f_32_norm = adaptive_instance_normalization(prior_32_align, sq_f_32)
                sq_f_32_fuse = self.conv_32_fuse(torch.cat((sq_f_32_norm, sq_f_32), dim=1))
                scale_32 = self.conv_32_scale(sq_f_32_fuse)
                shift_32 = self.conv_32_shift(sq_f_32_fuse)
                sq_f_32_res = sq_f_32_ori * scale_32 + shift_32
                sq_pf_32_out = sq_f_32_ori + sq_f_32_res
            
        else:
            sq_pf_32_out = sq_f_32.clone()


        sq_f_64 = self.conv_up(sq_pf_32_out) #64*1024
        
        sq_f_64_ori = sq_f_64.clone()
        prior_64_align = torch.zeros_like(sq_f_64_ori)
        prior_64_mask = torch.zeros((sq_f_64_ori.size(0), 1, sq_f_64_ori.size(2), sq_f_64_ori.size(3)), dtype=sq_f_64_ori.dtype, layout=sq_f_64_ori.layout, device=sq_f_64_ori.device)
 
        
        for b, p_64_prior in enumerate(priors64): #512*8*8, 512*16*16, 512*32*32, 256*64*64, 128*128*128 different batch
            p_64 = p_64_prior.clone() #.detach() #no backward to prior
            for c in range(p_64.size(0)): # for each character
                center = (locs[b][c].detach()/2.0).int() #+ random.randint(-4,4)### no backward 
                width = 32
                if center < width:
                    x1 = 0
                    y1 = max(32 - center, 0)
                else:
                    x1 = center -width
                    y1 = max(32 - width, 0)
                if center + width > sq_f_64.size(-1):
                    x2 = sq_f_64.size(-1)
                else:
                    x2 = center + width

                '''
                center align
                '''
                # y1 = 32 - torch.div(x2-x1, 2, rounding_mode='trunc')
                y2 = y1 + x2 - x1
                
                if single_sr:
                    char_prior_f = p_64[c:c+1, :, :, y1:y2].clone()
                    char_lq_f = sq_f_64[b:b+1, :, :, x1:x2].clone()
                    adain_prior_f = adaptive_instance_normalization(char_prior_f, char_lq_f)

                    fuse_64_prior = self.conv_64_fuse(torch.cat((adain_prior_f, char_lq_f), dim=1))
                    scale = self.conv_64_scale(fuse_64_prior)
                    shift = self.conv_64_shift(fuse_64_prior)
                    prior_64_align[b, :, :, x1:x2] = prior_64_align[b, :, :, x1:x2] + sq_f_64[b, :, :, x1:x2].clone() * scale[0,...] + shift[0,...]
                else:
                    prior_64_align[b, :, :, x1:x2] = prior_64_align[b, :, :, x1:x2] + p_64[c:c+1, :, :, y1:y2].clone()
        #         prior_64_mask[b, :, :, x1:x2] += 1.0
                

        # prior_64_mask[prior_64_mask<2]=1.0
        # prior_64_align = prior_64_align / prior_64_mask.repeat(1, prior_64_align.size(1), 1, 1)
        if single_sr:
            sq_pf_64 = sq_f_64_ori + prior_64_align
        else:
            sq_f_64_norm = adaptive_instance_normalization(prior_64_align, sq_f_64_ori)
            sq_f_64_fuse = self.conv_64_fuse(torch.cat((sq_f_64_norm, sq_f_64_ori), dim=1))
            scale_64 = self.conv_64_scale(sq_f_64_fuse)
            shift_64 = self.conv_64_shift(sq_f_64_fuse)
            sq_f_64_res = sq_f_64_ori * scale_64 + shift_64
            sq_pf_64 = sq_f_64_ori + sq_f_64_res

        f256 = self.conv_final(sq_pf_64)

        # adain_lr2prior = adaptive_instance_normalization(prior_full_64, F.interpolate(sq_f_32_ori, scale_factor=2, mode='bilinear'))
        # prior_out = self.conv_priorout(adain_lr2prior)

        return f256 #prior_out