Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,273 Bytes
981b0ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import torch
from torch import nn
from torch.nn import functional as F
import math
from op.fused_act import FusedLeakyReLU, fused_leaky_relu
class TextPriorModel(nn.Module):
def __init__(
self,
size=128,
style_dim=512,
n_mlp=8,
class_num=6736,
lr_mlp=0.01,
):
super().__init__()
self.TextGenerator = StyleCharacter(size=size, style_dim=style_dim, n_mlp=n_mlp, class_num=class_num, lr_mlp=lr_mlp)
# '''
# Stop gradient
# '''
# for param_g in self.TextGenerator.parameters():
# param_g.requires_grad = False
def forward(self, styles, labels, noise):
return self.TextGenerator(styles, labels, noise)
class StyleCharacter(nn.Module):
def __init__(
self,
size=128,
style_dim=512,
n_mlp=8,
class_num=6736,
channel_multiplier=1,
blur_kernel=[1, 3, 3, 1],
lr_mlp=0.01,
):
super().__init__()
self.size = size
self.n_mlp = n_mlp
self.style_dim = style_dim
style_mlp_layers = [PixelNorm()]
for i in range(n_mlp):
style_mlp_layers.append(
EqualLinear(
style_dim, style_dim, bias=True, bias_init_val=0, lr_mul=lr_mlp,
activation='fused_lrelu'))
self.style_mlp = nn.Sequential(*style_mlp_layers)
self.channels = {
4: 512,
8: 512,
16: 512,
32: 512,
64: 256 * channel_multiplier,
128: 128 * channel_multiplier,
256: 64 * channel_multiplier,
512: 32 * channel_multiplier,
1024: 16 * channel_multiplier,
}
self.input_text = SelectText(class_num, self.channels[4])
self.conv1 = StyledConv(
self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
)
self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
self.log_size = int(math.log(size, 2)) #7
self.convs = nn.ModuleList()
self.upsamples = nn.ModuleList()
self.to_rgbs = nn.ModuleList()
in_channel = self.channels[4]
for i in range(3, self.log_size + 1):
out_channel = self.channels[2 ** i]
self.convs.append(
StyledConv(
in_channel,
out_channel,
3,
style_dim,
upsample=True,
blur_kernel=blur_kernel,
)
)
self.convs.append(
StyledConv(
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
)
)
self.to_rgbs.append(ToRGB(out_channel, style_dim))
in_channel = out_channel
self.n_latent = self.log_size * 2 - 2
def forward(
self,
styles,
labels,
noise=None,
):
styles = self.style_mlp(styles)#
latent = styles.unsqueeze(1).repeat(1, self.n_latent, 1) #
out = self.input_text(labels) #4*4
out = self.conv1(out, latent[:, 0], noise=None)
skip = self.to_rgb1(out, latent[:, 1])
i = 1
noise_i = 3
for conv1, conv2, to_rgb in zip(
self.convs[::2], self.convs[1::2], self.to_rgbs
):
out = conv1(out, latent[:, i], noise=None)
out = conv2(out, latent[:, i + 1], noise=None)
skip = to_rgb(out.clone(), latent[:, i + 2], skip)
if out.size(-1) == 64:
prior_features64 = out.clone() # only
prior_rgb64 = skip.clone()
if out.size(-1) == 32:
prior_features32 = out.clone() # only
prior_rgb32 = skip.clone()
i += 2
noise_i += 2
image = skip
return image, prior_features64, prior_features32 #, prior_rgb64, prior_rgb32 #prior_features 7
class PixelNorm(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
class EqualLinear(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Size of each sample.
out_channels (int): Size of each output sample.
bias (bool): If set to ``False``, the layer will not learn an additive
bias. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
lr_mul (float): Learning rate multiplier. Default: 1.
activation (None | str): The activation after ``linear`` operation.
Supported: 'fused_lrelu', None. Default: None.
"""
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=0, lr_mul=1, activation=None):
super(EqualLinear, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.lr_mul = lr_mul
self.activation = activation
if self.activation not in ['fused_lrelu', None]:
raise ValueError(f'Wrong activation value in EqualLinear: {activation}'
"Supported ones are: ['fused_lrelu', None].")
self.scale = (1 / math.sqrt(in_channels)) * lr_mul
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
else:
self.register_parameter('bias', None)
def forward(self, x):
if self.bias is None:
bias = None
else:
bias = self.bias * self.lr_mul
if self.activation == 'fused_lrelu':
out = F.linear(x, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(x, self.weight * self.scale, bias=bias)
return out
class SelectText(nn.Module):
def __init__(self, class_num, channel, size=4):
super().__init__()
self.size = size
self.TextEmbeddings = nn.Parameter(torch.randn(class_num, channel, 1, 1))
def forward(self, labels):
b, c = labels.size()
TestEmbs = []
for i in range(b):
EmbTmps = []
for j in range(c):
EmbTmps.append(self.TextEmbeddings[labels[i][j]:labels[i][j]+1,...].repeat(1,1,self.size,self.size)) #
Seqs = torch.cat(EmbTmps, dim=3)
TestEmbs.append(Seqs)
OutEmbs = torch.cat(TestEmbs, dim=0)
return OutEmbs
class StyledConv(nn.Module):
def __init__(
self,
in_channel,
out_channel,
kernel_size,
style_dim,
upsample=False,
blur_kernel=[1, 3, 3, 1],
demodulate=True,
):
super().__init__()
self.conv = ModulatedConv2d(
in_channel,
out_channel,
kernel_size,
style_dim,
upsample=upsample,
blur_kernel=blur_kernel,
demodulate=demodulate,
)
self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
self.activate = FusedLeakyReLU(out_channel)
def forward(self, input, style, noise=None):
out = self.conv(input, style)
out = out + self.bias
out = self.activate(out)
return out
class ModulatedConv2d(nn.Module):
def __init__(
self,
in_channel,
out_channel,
kernel_size,
style_dim,
demodulate=True,
upsample=False,
downsample=False,
blur_kernel=[1, 3, 3, 1],
):
super().__init__()
self.eps = 1e-8
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
self.up = nn.Upsample(scale_factor=2, mode='bilinear')
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
)
self.modulation = EqualLinear(style_dim, in_channel, bias=True, bias_init_val=1, lr_mul=1, activation=None)
self.demodulate = demodulate
def forward(self, input, style):
batch, in_channel, height, width = input.shape
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
out = self.up(input)
out = F.conv2d(out, weight, padding=1, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class ToRGB(nn.Module):
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.upsample = upsample
out_dim = 1
self.conv = ModulatedConv2d(in_channel, out_dim, 1, style_dim, demodulate=False)
self.bias = nn.Parameter(torch.zeros(1, out_dim, 1, 1))
def forward(self, input, style, skip=None):
out = self.conv(input, style)
out = out + self.bias
if skip is not None:
if self.upsample:
skip = F.interpolate(
skip, scale_factor=2, mode='bilinear', align_corners=False)
out = out + skip
return torch.tanh(out)
|