Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,715 Bytes
5307ec1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
# -*- coding: utf-8 -*-
import cv2
import os.path as osp
import torch
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import logging
logging.getLogger('modelscope').disabled = True
from cnstd import CnStd
from utils.utils_transocr import get_alphabet
from utils.yolo_ocr_xloc import get_yolo_ocr_xloc
from ultralytics import YOLO
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from networks import *
import warnings
warnings.filterwarnings('ignore')
from modelscope import snapshot_download
##########################################################################################
###############Text Restoration Model revised by xiaoming li
##########################################################################################
alphabet_path = './models/benchmark_cvpr23.txt'
CommonWordsForOCR = get_alphabet(alphabet_path)
CommonWords = CommonWordsForOCR[2:-1]
def str2idx(text):
idx = []
for t in text:
idx.append(CommonWords.index(t) if t in CommonWords else 3484) #3955
return idx
def get_parameter_details(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
return num_params / 1e6
def tensor2numpy(tensor):
tensor = tensor * 0.5 + 0.5
tensor = tensor.squeeze(0).permute(1, 2, 0).flip(2)
return np.clip(tensor.float().cpu().numpy(), 0, 1) * 255.0
class MARCONetPlus(object):
def __init__(self, WEncoderPath=None, PriorModelPath=None, SRModelPath=None, YoloPath=None, device='cuda'):
self.device = device
modelscope_dir = snapshot_download('damo/cv_convnextTiny_ocr-recognition-general_damo', cache_dir='./checkpoints/modelscope_ocr')
self.modelscope_ocr_recognition = pipeline(Tasks.ocr_recognition, model=modelscope_dir)
self.yolo_character = YOLO(YoloPath)
self.modelWEncoder = PSPEncoder() # WEncoder()
self.modelWEncoder.load_state_dict(torch.load(WEncoderPath)['params'], strict=True)
self.modelWEncoder.eval()
self.modelWEncoder.to(device)
self.modelPrior = TextPriorModel()
self.modelPrior.load_state_dict(torch.load(PriorModelPath)['params'], strict=True)
self.modelPrior.eval()
self.modelPrior.to(device)
self.modelSR = SRNet()
self.modelSR.load_state_dict(torch.load(SRModelPath)['params'], strict=True)
self.modelSR.eval()
self.modelSR.to(device)
print('='*128)
print('{:>25s} : {:.2f} M Parameters'.format('modelWEncoder', get_parameter_details(self.modelWEncoder)))
print('{:>25s} : {:.2f} M Parameters'.format('modelPrior', get_parameter_details(self.modelPrior)))
print('{:>25s} : {:.2f} M Parameters'.format('modelSR', get_parameter_details(self.modelSR)))
print('='*128)
torch.cuda.empty_cache()
self.cnstd = CnStd(model_name='db_resnet34',rotated_bbox=True, model_backend='pytorch', box_score_thresh=0.3, min_box_size=10, context=device)
self.insize = 32
def handle_texts(self, img, bg=None, sf=4, is_aligned=False, lq_label=None):
'''
Parameters:
img: RGB 0~255.
'''
height, width = img.shape[:2]
bg_height, bg_width = bg.shape[:2]
print(' ' * 25 + f' ... The input->output image size is {bg_height//sf}*{bg_width//sf}->{bg_height}*{bg_width}')
full_mask_blur = np.zeros(bg.shape, dtype=np.float32)
full_mask_noblur = np.zeros(bg.shape, dtype=np.float32)
full_text_img = np.zeros(bg.shape, dtype=np.float32) #+255
orig_texts, enhanced_texts, debug_texts, pred_texts = [], [], [], []
ocr_scores = []
if not is_aligned:
box_infos = self.cnstd.detect(img)
for iix, box_info in enumerate(box_infos['detected_texts']):
box = box_info['box'].astype(int)# left top, right top, right bottom, left bottom, [width, height]
score = box_info['score']
if score < 0.5:
continue
extend_box = box.copy()
w = int(np.linalg.norm(box[0] - box[1]))
h = int(np.linalg.norm(box[0] - box[3]))
# extend the bounding box
extend_lr = 0.15 * h
extend_tb = 0.05 * h
vec_w = (box[1] - box[0]) / w
vec_h = (box[3] - box[0]) / h
extend_box[0] = box[0] - vec_w * extend_lr - vec_h * extend_tb
extend_box[1] = box[1] + vec_w * extend_lr - vec_h * extend_tb
extend_box[2] = box[2] + vec_w * extend_lr + vec_h * extend_tb
extend_box[3] = box[3] - vec_w * extend_lr + vec_h * extend_tb
extend_box = extend_box.astype(int)
w = int(np.linalg.norm(extend_box[0] - extend_box[1]))
h = int(np.linalg.norm(extend_box[0] - extend_box[3]))
if w > h:
ref_h = self.insize
ref_w = int(ref_h * w / h)
else:
print(' ' * 25 + ' ... Can not handle vertical text temporarily')
continue
ref_point = np.float32([[0,0], [ref_w, 0], [ref_w, ref_h], [0, ref_h]])
det_point = np.float32(extend_box)
matrix = cv2.getPerspectiveTransform(det_point, ref_point)
inv_matrix = cv2.getPerspectiveTransform(ref_point*sf, det_point*sf)
cropped_img = cv2.warpPerspective(img, matrix, (ref_w, ref_h), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_LINEAR)
in_img, SQ, save_debug, pred_text, preds_locs_txt = self._process_text_line(cropped_img)
if in_img is None:
continue
h_crop, w_crop = cropped_img.shape[:2]
SQ = cv2.resize(SQ, (w_crop * sf, h_crop * sf), interpolation=cv2.INTER_LINEAR)
debug_texts.append(save_debug)
orig_texts.append(in_img)
enhanced_texts.append(SQ)
pred_texts.append(''.join(pred_text))
tmp_mask = np.ones(SQ.shape).astype(float)
warp_mask = cv2.warpPerspective(tmp_mask, inv_matrix, (bg_width, bg_height), flags=3)
warp_img = cv2.warpPerspective(SQ, inv_matrix, (bg_width, bg_height), flags=3)
# erode and blur based on the height of text region
blur_pad = int(h // 6)
if blur_pad % 2 == 0:
blur_pad += 1
blur_radius = (blur_pad - 1) // 2
erode_radius = blur_radius + 1
erode_pad = 2 * erode_radius + 1
kernel_erode = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (erode_pad, erode_pad))
warp_mask_erode = cv2.erode(warp_mask, kernel_erode, iterations=1)
# warp_mask_blur = cv2.GaussianBlur(warp_mask_erode, (blur_pad, blur_pad), 0)
warp_mask_blur = cv2.blur(warp_mask_erode, (blur_pad, blur_pad))
full_text_img = full_text_img + warp_img
full_mask_blur = full_mask_blur + warp_mask_blur
full_mask_noblur = full_mask_noblur + warp_mask
ocr_scores.append(score)
index = full_mask_noblur > 0
full_text_img[index] = full_text_img[index]/full_mask_noblur[index]
full_mask_blur = np.clip(full_mask_blur, 0, 1)
# fuse the text region back to the background
final_img = full_text_img * full_mask_blur + bg * (1 - full_mask_blur)
return final_img, orig_texts, enhanced_texts, debug_texts, pred_texts #, ocr_scores
else: #aligned
in_img, SQ, save_debug, pred_text, preds_locs_txt = self._process_text_line(img)
if in_img is not None:
debug_texts.append(save_debug)
orig_texts.append(in_img)
enhanced_texts.append(SQ)
pred_texts.append(''.join(pred_text))
return img, orig_texts, enhanced_texts, debug_texts, pred_texts #, preds_locs_txt
def _process_text_line(self, img):
"""
Process a single text line region for text enhancement.
Args:
img: Input text image
"""
height, width = img.shape[:2]
if height > width:
print(' ' * 25 + ' ... Can not handle vertical text temporarily')
return (None,) * 5
w_norm = int(self.insize * width / height) // 4 * 4
h_norm = self.insize
img = cv2.resize(img, (w_norm*4, h_norm*4), interpolation=cv2.INTER_LINEAR)
in_img = cv2.resize(img, (w_norm, h_norm), interpolation=cv2.INTER_LINEAR)
ShowLQ = img[:,:,::-1]
LQ_HeightNorm = transforms.ToTensor()(in_img)
LQ_HeightNorm = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(LQ_HeightNorm).unsqueeze(0).to(self.device)
'''
Step 1: Predicting the character labels, bounding boxes.
'''
recognized_boxes, pred_text, char_x_centers = get_yolo_ocr_xloc(
img, # input image, RGB 0~255
yolo_model=self.yolo_character, # YOLO model instance for character detection
ocr_pipeline=self.modelscope_ocr_recognition, # OCR pipeline/model for character recognition
num_cropped_boxes=5, # Number of adjacent character boxes to include in each cropped segment (window size)
expand_px=1, # Number of pixels to expand each crop region on all sides (except first/last)
expand_px_for_first_last_cha=12, # Number of pixels to expand the crop region for the first and last character (left/right respectively)
yolo_iou=0.1, # IOU threshold for YOLO non-max suppression (NMS)
yolo_conf=0.07 # Confidence threshold for YOLO detection
)
print('{:>25s} ... Recognized chars: {}'.format(' ', ''.join(pred_text)))
loc_sr = torch.tensor(char_x_centers, device=self.device).unsqueeze(0)
# show character location
pad = 1
ShowPredLoc = ShowLQ.copy()
for l in range(len(pred_text)):
center_pred_w = int(loc_sr[0][l].item())
if center_pred_w > 0:
ShowPredLoc[:, max(0, center_pred_w-pad):min(center_pred_w+pad, ShowPredLoc.shape[1]), :] = 0
ShowPredLoc[:, max(0, center_pred_w-pad):min(center_pred_w+pad, ShowPredLoc.shape[1]), 1] = 255
'''
Step 2: Character Prior Generation
'''
with torch.no_grad():
w = self.modelWEncoder(LQ_HeightNorm, loc_sr)
predict_characters128 = []
predict_characters64 = []
predict_characters32 = []
for b in range(w.size(0)):
w0 = w[b,...].clone() #16*512
pred_label = str2idx(pred_text)
pred_label = torch.Tensor(pred_label).type(torch.LongTensor).view(-1, 1)#.to(device)
with torch.no_grad():
prior_cha, prior_fea64, prior_fea32 = self.modelPrior(styles=w0[:len(pred_text),:], labels=pred_label, noise=None) #b *n * w * h
predict_characters128.append(prior_cha)
predict_characters64.append(prior_fea64)
predict_characters32.append(prior_fea32)
'''
Step 3: Character SR
'''
with torch.no_grad():
extend_right_width = extend_left_width = h_norm // 2
LQ_HeightNorm_WidthExtend = F.pad(LQ_HeightNorm, (extend_left_width, extend_right_width, 0, 0), mode='replicate')
preds_locs_txt = ''
loc_for_extend_sr = loc_sr.clone()
for i in range(len(pred_text)):
preds_locs_txt += str(int(loc_for_extend_sr[0][i].cpu().item()))+'_'
loc_for_extend_sr[0][i] = loc_for_extend_sr[0][i] + extend_left_width * 4
SR = self.modelSR(LQ_HeightNorm_WidthExtend, predict_characters64, predict_characters32, loc_for_extend_sr)
SR = tensor2numpy(SR)[:, extend_left_width * 4:extend_left_width * 4 + w_norm*4, ::-1]
# reduce color inconsistency,use ab channel from in_img
# sr_lab = cv2.cvtColor(SR.astype(np.uint8), cv2.COLOR_BGR2LAB)
# target_size = (SR.shape[1], SR.shape[0])
# in_img_resize = cv2.resize(in_img, target_size, interpolation=cv2.INTER_LINEAR)
# in_img_lab = cv2.cvtColor(in_img_resize.astype(np.uint8), cv2.COLOR_BGR2LAB)
# sr_lab[:,:,1:] = in_img_lab[:,:,1:]
# SR = cv2.cvtColor(sr_lab, cv2.COLOR_LAB2BGR)
prior128 = []
pad = 2
for prior in predict_characters128:
for ii, p in enumerate(prior):
prior128.append(p)
prior128 = torch.cat(prior128, dim=2)
prior128 = prior128 * 0.5 + 0.5
prior128 = prior128.permute(1, 2, 0).flip(2)
prior128 = np.clip(prior128.float().cpu().numpy(), 0, 1) * 255.0
prior128 = np.repeat(prior128, 3, axis=2)
ShowPrior = cv2.resize(prior128, (SR.shape[1], int(128 * SR.shape[1] / prior128.shape[1])), interpolation=cv2.INTER_LINEAR)
#--------Fuse the structure prior to the LR input to show the details of alignment--------------
fusion_bg = np.zeros_like(SR, dtype=np.float32)
w4 = w_norm * 4
for iii, c in enumerate(loc_sr[0].int()):
current_prior = prior128[:, iii*128:(iii+1)*128, :]
center_loc = c.item()
x1 = max(center_loc - 64, 0)
x2 = min(center_loc + 64, w4)
y1 = max(64 - center_loc, 0)
y2 = y1 + (x2 - x1)
try:
fusion_bg[:, x1:x2, :] += current_prior[:, y1:y2, :]
except:
return (None,) * 5
mask = fusion_bg / 255.0
fusion_bg[:,:,0] = 0
fusion_bg[:,:,2] = 0
ShowLQ = ShowLQ[:,:,::-1]
fusion_bg = fusion_bg.astype(ShowLQ.dtype)
fusion_bg = fusion_bg * 0.3 * mask + ShowLQ * 0.7 * mask + (1-mask) * ShowLQ
ShowPrior = cv2.normalize(ShowPrior, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
save_debug = np.vstack((ShowLQ, ShowPredLoc[:,:,::-1], SR, ShowPrior, fusion_bg))
return in_img, SR, save_debug, pred_text, preds_locs_txt
if __name__ == '__main__':
print('Test')
|