File size: 14,715 Bytes
5307ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# -*- coding: utf-8 -*-
import cv2
import os.path as osp
import torch
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import logging
logging.getLogger('modelscope').disabled = True

from cnstd import CnStd
from utils.utils_transocr import get_alphabet
from utils.yolo_ocr_xloc import get_yolo_ocr_xloc
from ultralytics import YOLO

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from networks import *
import warnings
warnings.filterwarnings('ignore')

from modelscope import snapshot_download


##########################################################################################
###############Text Restoration Model revised by xiaoming li
##########################################################################################

alphabet_path = './models/benchmark_cvpr23.txt'
CommonWordsForOCR = get_alphabet(alphabet_path)
CommonWords = CommonWordsForOCR[2:-1]



def str2idx(text):
    idx = []
    for t in text:
        idx.append(CommonWords.index(t) if t in CommonWords else 3484) #3955
    return idx

def get_parameter_details(net):
    num_params = 0
    for param in net.parameters():
        num_params += param.numel()
    return num_params / 1e6

def tensor2numpy(tensor):
    tensor = tensor * 0.5 + 0.5
    tensor = tensor.squeeze(0).permute(1, 2, 0).flip(2)
    return np.clip(tensor.float().cpu().numpy(), 0, 1) * 255.0


class MARCONetPlus(object):
    def __init__(self, WEncoderPath=None, PriorModelPath=None, SRModelPath=None, YoloPath=None, device='cuda'):
        self.device = device

        modelscope_dir = snapshot_download('damo/cv_convnextTiny_ocr-recognition-general_damo', cache_dir='./checkpoints/modelscope_ocr')
        self.modelscope_ocr_recognition = pipeline(Tasks.ocr_recognition, model=modelscope_dir)
        self.yolo_character = YOLO(YoloPath)

        self.modelWEncoder = PSPEncoder() # WEncoder()
        self.modelWEncoder.load_state_dict(torch.load(WEncoderPath)['params'], strict=True)
        self.modelWEncoder.eval()
        self.modelWEncoder.to(device)

        self.modelPrior = TextPriorModel()
        self.modelPrior.load_state_dict(torch.load(PriorModelPath)['params'], strict=True)
        self.modelPrior.eval()
        self.modelPrior.to(device)
    
        self.modelSR = SRNet()
        self.modelSR.load_state_dict(torch.load(SRModelPath)['params'], strict=True)
        self.modelSR.eval()
        self.modelSR.to(device)


        print('='*128)
        print('{:>25s} : {:.2f} M Parameters'.format('modelWEncoder', get_parameter_details(self.modelWEncoder)))
        print('{:>25s} : {:.2f} M Parameters'.format('modelPrior', get_parameter_details(self.modelPrior)))
        print('{:>25s} : {:.2f} M Parameters'.format('modelSR', get_parameter_details(self.modelSR)))
        print('='*128)

        torch.cuda.empty_cache()
        self.cnstd = CnStd(model_name='db_resnet34',rotated_bbox=True, model_backend='pytorch', box_score_thresh=0.3, min_box_size=10, context=device)
        self.insize = 32


    def handle_texts(self, img, bg=None, sf=4, is_aligned=False, lq_label=None):
        '''
        Parameters:
            img: RGB 0~255.
        '''

        height, width = img.shape[:2]
        bg_height, bg_width = bg.shape[:2]
        print(' ' * 25 + f' ... The input->output image size is {bg_height//sf}*{bg_width//sf}->{bg_height}*{bg_width}')
        
        full_mask_blur = np.zeros(bg.shape, dtype=np.float32)
        full_mask_noblur = np.zeros(bg.shape, dtype=np.float32)
        full_text_img = np.zeros(bg.shape, dtype=np.float32) #+255

        orig_texts, enhanced_texts, debug_texts, pred_texts = [], [], [], []
        ocr_scores = []

        if not is_aligned:
            box_infos = self.cnstd.detect(img)
            for iix, box_info in enumerate(box_infos['detected_texts']):
                box = box_info['box'].astype(int)# left top, right top, right bottom, left bottom, [width, height]
                score = box_info['score']
                if score < 0.5:
                    continue

                extend_box = box.copy()
                w = int(np.linalg.norm(box[0] - box[1]))
                h = int(np.linalg.norm(box[0] - box[3]))

                # extend the bounding box
                extend_lr = 0.15 * h  
                extend_tb = 0.05 * h 
                vec_w = (box[1] - box[0]) / w
                vec_h = (box[3] - box[0]) / h

                extend_box[0] = box[0] - vec_w * extend_lr - vec_h * extend_tb
                extend_box[1] = box[1] + vec_w * extend_lr - vec_h * extend_tb
                extend_box[2] = box[2] + vec_w * extend_lr + vec_h * extend_tb
                extend_box[3] = box[3] - vec_w * extend_lr + vec_h * extend_tb
                extend_box = extend_box.astype(int)

                w = int(np.linalg.norm(extend_box[0] - extend_box[1]))
                h = int(np.linalg.norm(extend_box[0] - extend_box[3]))
                
                if w > h:
                    ref_h = self.insize
                    ref_w = int(ref_h * w / h)
                else:
                    print(' ' * 25 + ' ... Can not handle vertical text temporarily')
                    continue

                ref_point = np.float32([[0,0], [ref_w, 0], [ref_w, ref_h], [0, ref_h]])
                det_point = np.float32(extend_box)

                matrix = cv2.getPerspectiveTransform(det_point, ref_point)
                inv_matrix = cv2.getPerspectiveTransform(ref_point*sf, det_point*sf)

                cropped_img = cv2.warpPerspective(img, matrix, (ref_w, ref_h), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_LINEAR)


                in_img, SQ, save_debug, pred_text, preds_locs_txt = self._process_text_line(cropped_img)
                if in_img is None:
                    continue
                h_crop, w_crop = cropped_img.shape[:2]
                SQ = cv2.resize(SQ, (w_crop * sf, h_crop * sf), interpolation=cv2.INTER_LINEAR)
                
                debug_texts.append(save_debug)
                orig_texts.append(in_img)
                enhanced_texts.append(SQ)
                pred_texts.append(''.join(pred_text))

                tmp_mask = np.ones(SQ.shape).astype(float)
                warp_mask = cv2.warpPerspective(tmp_mask, inv_matrix, (bg_width, bg_height), flags=3)
                warp_img = cv2.warpPerspective(SQ, inv_matrix, (bg_width, bg_height), flags=3)
 

                # erode and blur based on the height of text region
                blur_pad = int(h // 6)

                if blur_pad % 2 == 0:
                    blur_pad += 1
                blur_radius = (blur_pad - 1) // 2
                erode_radius = blur_radius + 1   
                erode_pad = 2 * erode_radius + 1

                kernel_erode = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (erode_pad, erode_pad))
                warp_mask_erode = cv2.erode(warp_mask, kernel_erode, iterations=1)

                # warp_mask_blur = cv2.GaussianBlur(warp_mask_erode, (blur_pad, blur_pad), 0)
                warp_mask_blur = cv2.blur(warp_mask_erode, (blur_pad, blur_pad))

                full_text_img = full_text_img + warp_img
                full_mask_blur = full_mask_blur + warp_mask_blur
                full_mask_noblur = full_mask_noblur + warp_mask
                
                ocr_scores.append(score)


            index = full_mask_noblur > 0
            full_text_img[index] = full_text_img[index]/full_mask_noblur[index]

            full_mask_blur = np.clip(full_mask_blur, 0, 1)
            # fuse the text region back to the background
            final_img = full_text_img * full_mask_blur + bg * (1 - full_mask_blur)


            return final_img, orig_texts, enhanced_texts, debug_texts, pred_texts #, ocr_scores
        
        else: #aligned
            
            in_img, SQ, save_debug, pred_text, preds_locs_txt = self._process_text_line(img)
            if in_img is not None:
                debug_texts.append(save_debug)
                orig_texts.append(in_img)
                enhanced_texts.append(SQ)
                pred_texts.append(''.join(pred_text))
        
        return img, orig_texts, enhanced_texts, debug_texts, pred_texts #, preds_locs_txt

    def _process_text_line(self, img):
        """
        Process a single text line region for text enhancement.
        
        Args:
            img: Input text image
        
        """


        height, width = img.shape[:2]
        if height > width:
            print(' ' * 25 + ' ... Can not handle vertical text temporarily')
            return (None,) * 5
        
        w_norm = int(self.insize * width / height) // 4 * 4
        h_norm = self.insize

        img = cv2.resize(img, (w_norm*4, h_norm*4), interpolation=cv2.INTER_LINEAR)
        in_img = cv2.resize(img, (w_norm, h_norm), interpolation=cv2.INTER_LINEAR)
        ShowLQ = img[:,:,::-1]

        LQ_HeightNorm = transforms.ToTensor()(in_img)
        LQ_HeightNorm = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(LQ_HeightNorm).unsqueeze(0).to(self.device)


        '''
        Step 1: Predicting the character labels, bounding boxes.
        '''

        recognized_boxes, pred_text, char_x_centers = get_yolo_ocr_xloc(
            img,                        # input image, RGB 0~255
            yolo_model=self.yolo_character,       # YOLO model instance for character detection
            ocr_pipeline=self.modelscope_ocr_recognition,  # OCR pipeline/model for character recognition
            num_cropped_boxes=5,             # Number of adjacent character boxes to include in each cropped segment (window size)
            expand_px=1,                     # Number of pixels to expand each crop region on all sides (except first/last)
            expand_px_for_first_last_cha=12, # Number of pixels to expand the crop region for the first and last character (left/right respectively)
            yolo_iou=0.1,                    # IOU threshold for YOLO non-max suppression (NMS)
            yolo_conf=0.07                   # Confidence threshold for YOLO detection
        )

        print('{:>25s} ... Recognized chars: {}'.format(' ', ''.join(pred_text)))
        loc_sr = torch.tensor(char_x_centers, device=self.device).unsqueeze(0)

        
        # show character location 
        pad = 1
        ShowPredLoc = ShowLQ.copy()
        for l in range(len(pred_text)):
            center_pred_w = int(loc_sr[0][l].item())
            if center_pred_w > 0: 
                ShowPredLoc[:, max(0, center_pred_w-pad):min(center_pred_w+pad, ShowPredLoc.shape[1]), :] = 0
                ShowPredLoc[:, max(0, center_pred_w-pad):min(center_pred_w+pad, ShowPredLoc.shape[1]), 1] = 255


        '''
        Step 2: Character Prior Generation
        '''

        with torch.no_grad():
            w = self.modelWEncoder(LQ_HeightNorm, loc_sr)
        
        predict_characters128 = []
        predict_characters64 = []
        predict_characters32 = []

        for b in range(w.size(0)):
            w0 = w[b,...].clone() #16*512
            pred_label = str2idx(pred_text)
            pred_label = torch.Tensor(pred_label).type(torch.LongTensor).view(-1, 1)#.to(device)

            with torch.no_grad():
                prior_cha, prior_fea64, prior_fea32 = self.modelPrior(styles=w0[:len(pred_text),:], labels=pred_label, noise=None) #b *n * w * h

            predict_characters128.append(prior_cha)
            predict_characters64.append(prior_fea64)
            predict_characters32.append(prior_fea32)
            
        
        '''
        Step 3: Character SR
        '''

        with torch.no_grad():
            extend_right_width = extend_left_width = h_norm // 2
            LQ_HeightNorm_WidthExtend = F.pad(LQ_HeightNorm, (extend_left_width, extend_right_width, 0, 0), mode='replicate')
            
            preds_locs_txt = ''
            loc_for_extend_sr = loc_sr.clone()
            for i in range(len(pred_text)):
                preds_locs_txt += str(int(loc_for_extend_sr[0][i].cpu().item()))+'_'
                loc_for_extend_sr[0][i] = loc_for_extend_sr[0][i] + extend_left_width * 4
                
            SR = self.modelSR(LQ_HeightNorm_WidthExtend, predict_characters64, predict_characters32, loc_for_extend_sr)
    
        SR = tensor2numpy(SR)[:, extend_left_width * 4:extend_left_width * 4 + w_norm*4, ::-1]

        
        # reduce color inconsistency,use ab channel from in_img
        # sr_lab = cv2.cvtColor(SR.astype(np.uint8), cv2.COLOR_BGR2LAB)
        # target_size = (SR.shape[1], SR.shape[0])
        # in_img_resize = cv2.resize(in_img, target_size, interpolation=cv2.INTER_LINEAR)
        # in_img_lab = cv2.cvtColor(in_img_resize.astype(np.uint8), cv2.COLOR_BGR2LAB)
        # sr_lab[:,:,1:] = in_img_lab[:,:,1:]
        # SR = cv2.cvtColor(sr_lab, cv2.COLOR_LAB2BGR)

        
        prior128 = []
        pad = 2
        for prior in predict_characters128:
            for ii, p in enumerate(prior):
                prior128.append(p)
        prior128 = torch.cat(prior128, dim=2)
        prior128 = prior128 * 0.5 + 0.5
        prior128 = prior128.permute(1, 2, 0).flip(2)
        prior128 = np.clip(prior128.float().cpu().numpy(), 0, 1) * 255.0
        prior128 = np.repeat(prior128, 3, axis=2)

        ShowPrior = cv2.resize(prior128, (SR.shape[1], int(128 * SR.shape[1] / prior128.shape[1])), interpolation=cv2.INTER_LINEAR)
        

        #--------Fuse the structure prior to the LR input to show the details of alignment--------------
        fusion_bg = np.zeros_like(SR, dtype=np.float32)
        w4 = w_norm * 4

        for iii, c in enumerate(loc_sr[0].int()):
            current_prior = prior128[:, iii*128:(iii+1)*128, :]
            center_loc = c.item()

            x1 = max(center_loc - 64, 0)
            x2 = min(center_loc + 64, w4)
            y1 = max(64 - center_loc, 0)
            y2 = y1 + (x2 - x1)
            try:
                fusion_bg[:, x1:x2, :] += current_prior[:, y1:y2, :]
            except:
                return (None,) * 5

        
        mask = fusion_bg / 255.0
        fusion_bg[:,:,0] = 0
        fusion_bg[:,:,2] = 0


        ShowLQ = ShowLQ[:,:,::-1]
        fusion_bg = fusion_bg.astype(ShowLQ.dtype)
        fusion_bg = fusion_bg * 0.3 * mask + ShowLQ * 0.7 * mask + (1-mask) * ShowLQ

        ShowPrior = cv2.normalize(ShowPrior, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)

        save_debug = np.vstack((ShowLQ, ShowPredLoc[:,:,::-1], SR, ShowPrior, fusion_bg))

        return in_img, SR, save_debug, pred_text, preds_locs_txt



if __name__ == '__main__':
    print('Test')