Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,174 Bytes
2e41e44 87f9ab9 2e41e44 87f9ab9 2e41e44 87f9ab9 2e41e44 87f9ab9 86b170a 87f9ab9 86b170a 87f9ab9 62dccb6 87f9ab9 2e41e44 87f9ab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# // http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
import os
import gradio as gr
from torchvision.transforms.functional import to_tensor
from huggingface_hub import hf_hub_download, snapshot_download, login
import spaces
from tok.ar_dtok.ar_model import ARModel
from t2i_inference import T2IConfig, TextToImageInference
def generate_text(self, image: str, prompt: str) -> str:
image = image.convert('RGB')
image = to_tensor(image).unsqueeze(0).to(self.device)
image_code = self.visual_tokenizer.encoder(image.to(self.config.dtype))['bottleneck_rep']
image_text = "".join([f"<I{x}>" for x in image_code[0].cpu().tolist()])
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"{image_text}\n{prompt}"}
]
input_text = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = self.tokenizer(input_text, return_tensors="pt")
gen_ids = self.model.generate(
inputs.input_ids.to(self.device),
max_new_tokens=512,
do_sample=True)
return self.tokenizer.batch_decode(gen_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)[0]
login(token=os.getenv('HF_TOKEN'))
config = T2IConfig()
config.model = snapshot_download("ByteDance-Seed/Tar-7B")
config.ar_path = {
"1024px": hf_hub_download("ByteDance-Seed/Tar-TA-Tok", "ar_dtok_lp_1024px.pth"),
"512px": hf_hub_download("ByteDance-Seed/Tar-TA-Tok", "ar_dtok_lp_512px.pth"),
}
config.encoder_path = hf_hub_download("ByteDance-Seed/Tar-TA-Tok", "ta_tok.pth")
config.decoder_path = hf_hub_download("peizesun/llamagen_t2i", "vq_ds16_t2i.pt")
inference = TextToImageInference(config)
@spaces.GPU(duration=120)
def generate_image(prompt, resolution, top_p, top_k, cfg_scale):
image = inference.generate_image(prompt, resolution, top_p, top_k, cfg_scale)
return image
def clear_inputs_t2i():
return "", None
@spaces.GPU(duration=120)
def understand_image(image, prompt):
return generate_text(inference, image, prompt)
def clear_inputs_i2t():
return None, "", ""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
<div align="center">
### Tar: Unifying Visual Understanding and Generation via Text-Aligned Representations
[πΈοΈ Project Page](http://tar.csuhan.com) β’ [π Paper](http://arxiv.org/abs/2506.18898) β’ [π» Code](https://github.com/csuhan/Tar) β’ [π¦ Model](https://huggingface.co/collections/ByteDance-Seed/tar-6864cf0d9fe59a3b91cc4260)
</div>
""",
elem_id="title",
)
with gr.Tab("Image Generation"):
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt")
with gr.Accordion("Advanced Settings", open=False):
resolution = gr.Radio(
["512px", "1024px"], value="1024px", label="Resolution"
)
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
top_k = gr.Slider(1, 2000, value=1200, step=10, label="Top-k")
cfg_scale = gr.Slider(1.0, 20.0, value=4.0, step=0.5, label="CFG Scale")
with gr.Row():
generate_btn = gr.Button("Generate")
clear_btn = gr.Button("Clear")
with gr.Column(scale=2):
output_image = gr.Image(label="Generated Image")
generate_btn.click(
generate_image,
inputs=[prompt, resolution, top_p, top_k, cfg_scale],
outputs=output_image
)
clear_btn.click(
clear_inputs_t2i,
outputs=[prompt, output_image]
)
with gr.Tab("Image Understanding"):
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(label="Upload Image", type="pil")
question_input = gr.Textbox(label="Instruction", value="Describe the image shortly.")
with gr.Row():
qa_btn = gr.Button("Generate")
clear_btn_i2t = gr.Button("Clear")
with gr.Column(scale=1):
answer_output = gr.Textbox(label="Response", lines=4)
qa_btn.click(
understand_image,
inputs=[image_input, question_input],
outputs=answer_output
)
clear_btn_i2t.click(
clear_inputs_i2t,
outputs=[image_input, question_input, answer_output]
)
demo.launch(share=True)
|