Spaces:
Runtime error
Runtime error
File size: 11,407 Bytes
8b54513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import sys
import os
sys.path.append(os.path.abspath(__file__).rsplit('/', 2)[0])
import argparse
import multiprocessing as mp
import numpy as np
from typing import List, Optional
import torch
import torch.distributed as dist
from fairscale.nn.model_parallel import initialize as fs_init
import gradio as gr
from util.misc import setup_for_distributed
from util.misc import default_tensor_type
from model.meta import MetaModel
from data.conversation_lib import conv_templates, SeparatorStyle
from PIL import Image
import torchvision.transforms as transforms
from data.fintune_dataset import make_audio_features
from data import video_utils
T_random_resized_crop = transforms.Compose([
transforms.RandomResizedCrop(size=(224, 224), scale=(0.9, 1.0), ratio=(0.75, 1.3333), interpolation=3,
antialias=None), # 3 is bicubic
transforms.ToTensor(),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])
def load_audio(audio_path):
fbank = make_audio_features(audio_path, mel_bins=128)
fbank = fbank.transpose(0, 1)[None] #[1, 128, 1024]
return fbank
def load_video(video_path):
video_feats = video_utils.load_and_transform_video_data(video_path, video_path, clip_duration=1, clips_per_video=5)
return video_feats[:, :, 0]
def model_worker(
rank: int, args: argparse.Namespace, barrier: mp.Barrier,
request_queue: mp.Queue, response_queue: Optional[mp.Queue] = None,
) -> None:
"""
The worker function that manipulates the GPU to run the inference.
Exact n_gpu workers are started, with each one operating on a separate GPU.
Args:
rank (int): Distributed rank of the worker.
args (argparse.Namespace): All command line arguments.
barrier (multiprocessing.Barrier): A barrier used to delay the start
of Web UI to be after the start of the model.
"""
world_size = len(args.gpu_ids)
gpu_id = args.gpu_ids[rank]
dist.init_process_group(
backend="nccl", rank=rank, world_size=world_size,
init_method=f"tcp://{args.master_addr}:{args.master_port}",
)
print(f"| distributed init on worker {rank}/{world_size}. "
f"using gpu: {gpu_id}")
fs_init.initialize_model_parallel(world_size)
torch.cuda.set_device(gpu_id)
torch.manual_seed(1)
np.random.seed(1)
# set the print behavior.
setup_for_distributed(rank == 0)
target_dtype = {
"bf16": torch.bfloat16,
"fp16": torch.float16
}[args.dtype]
with default_tensor_type(dtype=target_dtype, device="cuda"):
model = MetaModel(args.llama_type, args.llama_config, tokenizer_path=args.tokenizer_path)
print("Loading pretrained weights ...")
checkpoint = torch.load(args.pretrained_path, map_location='cpu')
msg = model.load_state_dict(checkpoint, strict=False)
print("load result:\n", msg)
model.cuda()
model.eval()
print(f"Model = {str(model)}")
barrier.wait()
while True:
img_path, audio_path, video_path, chatbot, max_gen_len, temperature, top_p, modality = request_queue.get()
if 'image' in modality and img_path is not None:
image = Image.open(img_path).convert('RGB')
inputs = T_random_resized_crop(image)
elif 'video' in modality and video_path is not None:
inputs = load_video(video_path)
elif 'audio' in modality and audio_path is not None:
inputs = load_audio(audio_path)
else:
inputs = None
if inputs is not None:
inputs = inputs[None].cuda().to(target_dtype)
conv = conv_templates["v1"].copy()
for user, bot in chatbot:
conv.append_message(conv.roles[0], user)
conv.append_message(conv.roles[1], bot)
with torch.cuda.amp.autocast(dtype=target_dtype):
print(conv.get_prompt())
for stream_response in model.stream_generate(
conv.get_prompt(), inputs,
max_gen_len=max_gen_len, temperature=temperature, top_p=top_p,
modal = modality
):
conv_sep = (
conv.sep
if conv.sep_style == SeparatorStyle.SINGLE
else conv.sep2
)
end_pos = stream_response["text"].find(conv_sep)
if end_pos != -1:
stream_response["text"] = (
stream_response['text'][:end_pos].rstrip() + "\n"
)
stream_response["end_of_content"] = True
# keep a few characters if not end_of_content to avoid sending
# part of conv_sep before all of it is generated.
if not stream_response["end_of_content"]:
if len(stream_response["text"]) < len(conv_sep):
continue
stream_response["text"] = (
stream_response["text"][:-len(conv_sep)]
)
if response_queue is not None:
response_queue.put(stream_response)
if stream_response["end_of_content"]:
break
def gradio_worker(
request_queues: List[mp.Queue], response_queue: mp.Queue,
args: argparse.Namespace, barrier: mp.Barrier,
) -> None:
"""
The gradio worker is responsible for displaying the WebUI and relay the
requests to model workers. It should be launched only once.
Args:
request_queues (List[mp.Queue]): A list of request queues (one for
each model worker).
args (argparse.Namespace): All command line arguments.
barrier (multiprocessing.Barrier): A barrier used to delay the start
of Web UI to be after the start of the model.
"""
def show_user_input(msg, chatbot):
return "", chatbot + [[msg, None]]
def stream_model_output(img_path, audio_path, video_path, chatbot, max_gen_len, gen_t, top_p, modality):
for queue in request_queues:
queue.put((img_path, audio_path, video_path, chatbot, max_gen_len, gen_t, top_p, modality))
while True:
content_piece = response_queue.get()
chatbot[-1][1] = content_piece["text"]
yield chatbot
if content_piece["end_of_content"]:
break
def undo(chatbot):
if len(chatbot) > 0:
chatbot = chatbot[:-1]
return chatbot
def clear():
chatbot = []
msg = ""
return chatbot, msg
CSS ="""
.contain { display: flex; flex-direction: column; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; overflow: auto;}
"""
with gr.Blocks(css=CSS) as demo:
gr.Markdown("## OneLLM: One Framework to Align All Modalities with Language")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
img_path = gr.Image(label='Image Input', type='filepath')
video_path = gr.Video(label='Video Input')
audio_path = gr.Audio(label='Audio Input', type='filepath', sources=['upload'])
modality = gr.Radio(choices=['image', 'audio', 'video'], value='image', interactive=True, label='Input Modalities')
with gr.Column(scale=2):
chatbot = gr.Chatbot(elem_id="chatbot")
msg = gr.Textbox()
with gr.Row():
submit_button = gr.Button("Submit", variant="primary")
undo_button = gr.Button("Undo")
clear_button = gr.ClearButton([chatbot, msg, img_path, audio_path, video_path, modality])
with gr.Row():
max_gen_len = gr.Slider(
minimum=1, maximum=args.model_max_seq_len // 2,
value=args.model_max_seq_len // 2, interactive=True,
label="Single-turn max response length",
)
gen_t = gr.Slider(
minimum=0, maximum=1, value=0.1, interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0, maximum=1, value=0.75, interactive=True,
label="Top-p",
)
msg.submit(
show_user_input, [msg, chatbot], [msg, chatbot],
).then(
stream_model_output, [img_path, audio_path, video_path, chatbot, max_gen_len, gen_t, top_p, modality], chatbot,
)
submit_button.click(
show_user_input, [msg, chatbot], [msg, chatbot],
).then(
stream_model_output, [img_path, audio_path, video_path, chatbot, max_gen_len, gen_t, top_p, modality], chatbot,
)
undo_button.click(undo, chatbot, chatbot)
# img_path.change(clear, [], [chatbot, msg])
barrier.wait()
demo.queue(api_open=True).launch(share=True, max_threads=1)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Chat Demo")
group = parser.add_mutually_exclusive_group()
group.add_argument(
"--gpu_ids", type=int, nargs="+",
help="A list of space-separated gpu ids to run the model on. "
"The model will span across GPUs in tensor-parallel mode."
)
parser.add_argument(
"--tokenizer_path", type=str,
help="Path to the tokenizer.model file provided along with the LLaMA "
"model."
)
parser.add_argument(
"--llama_type", default="onellm", type=str, metavar="MODEL",
help="LLaMA model type."
)
parser.add_argument(
"--llama_config", type=str, required=True,
help="Path to the llama model config json."
)
parser.add_argument(
"--model_max_seq_len", type=int, default=2048,
help="Max sequence length accepted by the pretrained model."
)
parser.add_argument(
"--pretrained_path", type=str, required=True,
help="Path to the llama model checkpoints. A list of checkpoints is "
"supported and will be merged from left to right.")
parser.add_argument(
"--master_port", type=int, default=23862,
help="A port used by the PyTorch distributed module to initialize."
)
parser.add_argument(
"--master_addr", type=str, default="127.0.0.1",
help="An address used by the PyTorch distributed module to initialize."
)
parser.add_argument(
"--dtype", type=str, choices=["fp16", "bf16"], default="fp16",
help="The dtype used for model weights and inference."
)
args = parser.parse_args()
# using the default "fork" method messes up some imported libs (e.g.,
# pandas)
mp.set_start_method("spawn")
# setup the queues and start the model workers
request_queues = []
response_queue = mp.Queue()
worker_processes = []
barrier = mp.Barrier(len(args.gpu_ids) + 1)
for rank, gpu_id in enumerate(args.gpu_ids):
request_queue = mp.Queue()
rank_response_queue = response_queue if rank == 0 else None
process = mp.Process(
target=model_worker,
args=(rank, args, barrier, request_queue, rank_response_queue),
)
process.start()
worker_processes.append(process)
request_queues.append(request_queue)
gradio_worker(request_queues, response_queue, args, barrier)
|