File size: 6,460 Bytes
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy
import os
import time

import torch
from mmengine import Config, DictAction
from mmengine.dist import get_world_size, init_dist
from mmengine.logging import MMLogger, print_log
from mmengine.registry import init_default_scope
from mmengine.runner import Runner, load_checkpoint
from mmengine.utils import mkdir_or_exist
from mmengine.utils.dl_utils import set_multi_processing

from mmyolo.registry import MODELS


# TODO: Refactoring and improving
def parse_args():
    parser = argparse.ArgumentParser(description='MMYOLO benchmark a model')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('checkpoint', help='checkpoint file')
    parser.add_argument(
        '--repeat-num',
        type=int,
        default=1,
        help='number of repeat times of measurement for averaging the results')
    parser.add_argument(
        '--max-iter', type=int, default=2000, help='num of max iter')
    parser.add_argument(
        '--log-interval', type=int, default=50, help='interval of logging')
    parser.add_argument(
        '--work-dir',
        help='the directory to save the file containing '
        'benchmark metrics')
    parser.add_argument(
        '--fuse-conv-bn',
        action='store_true',
        help='Whether to fuse conv and bn, this will slightly increase'
        'the inference speed')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)
    return args


def measure_inference_speed(cfg, checkpoint, max_iter, log_interval,
                            is_fuse_conv_bn):
    env_cfg = cfg.get('env_cfg')
    if env_cfg.get('cudnn_benchmark'):
        torch.backends.cudnn.benchmark = True

    mp_cfg: dict = env_cfg.get('mp_cfg', {})
    set_multi_processing(**mp_cfg, distributed=cfg.distributed)

    # Because multiple processes will occupy additional CPU resources,
    # FPS statistics will be more unstable when num_workers is not 0.
    # It is reasonable to set num_workers to 0.
    dataloader_cfg = cfg.test_dataloader
    dataloader_cfg['num_workers'] = 0
    dataloader_cfg['batch_size'] = 1
    dataloader_cfg['persistent_workers'] = False
    data_loader = Runner.build_dataloader(dataloader_cfg)

    # build the model and load checkpoint
    model = MODELS.build(cfg.model)
    load_checkpoint(model, checkpoint, map_location='cpu')
    model = model.cuda()
    model.eval()

    # the first several iterations may be very slow so skip them
    num_warmup = 5
    pure_inf_time = 0
    fps = 0

    # benchmark with 2000 image and take the average
    for i, data in enumerate(data_loader):

        torch.cuda.synchronize()
        start_time = time.perf_counter()

        with torch.no_grad():
            model.test_step(data)

        torch.cuda.synchronize()
        elapsed = time.perf_counter() - start_time

        if i >= num_warmup:
            pure_inf_time += elapsed
            if (i + 1) % log_interval == 0:
                fps = (i + 1 - num_warmup) / pure_inf_time
                print_log(
                    f'Done image [{i + 1:<3}/ {max_iter}], '
                    f'fps: {fps:.1f} img / s, '
                    f'times per image: {1000 / fps:.1f} ms / img', 'current')

        if (i + 1) == max_iter:
            fps = (i + 1 - num_warmup) / pure_inf_time
            print_log(
                f'Overall fps: {fps:.1f} img / s, '
                f'times per image: {1000 / fps:.1f} ms / img', 'current')
            break
    return fps


def repeat_measure_inference_speed(cfg,
                                   checkpoint,
                                   max_iter,
                                   log_interval,
                                   is_fuse_conv_bn,
                                   repeat_num=1):
    assert repeat_num >= 1

    fps_list = []

    for _ in range(repeat_num):
        cp_cfg = copy.deepcopy(cfg)

        fps_list.append(
            measure_inference_speed(cp_cfg, checkpoint, max_iter, log_interval,
                                    is_fuse_conv_bn))

    if repeat_num > 1:
        fps_list_ = [round(fps, 1) for fps in fps_list]
        times_pre_image_list_ = [round(1000 / fps, 1) for fps in fps_list]
        mean_fps_ = sum(fps_list_) / len(fps_list_)
        mean_times_pre_image_ = sum(times_pre_image_list_) / len(
            times_pre_image_list_)
        print_log(
            f'Overall fps: {fps_list_}[{mean_fps_:.1f}] img / s, '
            f'times per image: '
            f'{times_pre_image_list_}[{mean_times_pre_image_:.1f}] ms / img',
            'current')
        return fps_list

    return fps_list[0]


# TODO: refactoring
def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    init_default_scope(cfg.get('default_scope', 'mmyolo'))

    distributed = False
    if args.launcher != 'none':
        init_dist(args.launcher, **cfg.get('env_cfg', {}).get('dist_cfg', {}))
        distributed = True
        assert get_world_size(
        ) == 1, 'Inference benchmark does not allow distributed multi-GPU'

    cfg.distributed = distributed

    log_file = None
    if args.work_dir:
        log_file = os.path.join(args.work_dir, 'benchmark.log')
        mkdir_or_exist(args.work_dir)

    MMLogger.get_instance('mmyolo', log_file=log_file, log_level='INFO')

    repeat_measure_inference_speed(cfg, args.checkpoint, args.max_iter,
                                   args.log_interval, args.fuse_conv_bn,
                                   args.repeat_num)


if __name__ == '__main__':
    main()