File size: 25,620 Bytes
db90530
 
 
 
 
 
 
8ed2a14
db90530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed2a14
db90530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0138b8
db90530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0138b8
 
 
 
 
 
 
 
 
 
 
 
db90530
a0138b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db90530
a0138b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbbd0b8
a0138b8
 
 
 
 
 
 
 
 
 
 
 
db90530
 
 
 
a0138b8
db90530
a0138b8
db90530
a0138b8
db90530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed2a14
db90530
8ed2a14
db90530
 
8ed2a14
a0138b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import math
import requests
from bs4 import BeautifulSoup
import FinanceDataReader as fdr
import ssl
import io
import base64
import gradio as gr
import matplotlib.pyplot as plt
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
import pytz
import yfinance as yf
from datetime import datetime, timedelta  # timedelta μΆ”κ°€
import gradio as gr
from gradio.components import Dataset
import matplotlib.pyplot as plt
import FinanceDataReader as fdr
import gradio as gr
import pandas as pd
from concurrent.futures import ThreadPoolExecutor, as_completed
import io
import base64



# ν•œκ΅­ ν‘œμ€€μ‹œ (KST) μ‹œκ°„λŒ€ μ„€μ •
kst = pytz.timezone('Asia/Seoul')

# SSL μΈμ¦μ„œ 검증 λΉ„ν™œμ„±ν™”
ssl._create_default_https_context = ssl._create_unverified_context

def parse_input(text, cash_amount, cash_ratio):
    lines = text.strip().split(',')
    stock_inputs = []
    total_target_weight = 0
    
    for line in lines:
        parts = line.split()
        if len(parts) == 4:
            stock_code, currency_code, quantity_expr, target_weight_expr = parts
            quantity = math.floor(eval(quantity_expr.replace(' ', '')))
            target_weight = eval(target_weight_expr.replace(' ', ''))
            target_ratio = (1 - cash_ratio / 100) * target_weight
            stock_inputs.append((currency_code, stock_code, quantity, target_weight, target_ratio))
            total_target_weight += target_weight

    cash_amount = math.floor(cash_amount) if cash_amount else 0
    krw_cash = {'amount': cash_amount, 'target_weight': cash_ratio / 100.0}

    stock_total_weight = total_target_weight

    for i in range(len(stock_inputs)):
        stock_inputs[i] = (stock_inputs[i][0], stock_inputs[i][1], stock_inputs[i][2], stock_inputs[i][3], (1 - krw_cash['target_weight']) * stock_inputs[i][3] / stock_total_weight)

    return stock_inputs, krw_cash

def get_exchange_rate(currency_code):
    if currency_code.lower() == 'krw':
        return 1.0
    
    ticker = f"{currency_code.upper()}KRW=X"
    data = yf.download(ticker, period='1d')
    if not data.empty:
        return data['Close'].iloc[0]
    else:
        raise ValueError("Failed to retrieve exchange rate data.")

def get_exchange_reflected_stock_price(stock_code, currency_code):
    new_price = get_current_stock_price(stock_code)
    exchange_rate = get_exchange_rate(currency_code)
    return math.floor(new_price * exchange_rate)

def get_current_stock_price(stock_code):
    df = fdr.DataReader(stock_code)
    return df['Close'].iloc[-1]

def build_portfolio(stock_inputs, krw_cash):
    portfolio = {}
    target_weights = {}
    
    with ThreadPoolExecutor() as executor:
        results = executor.map(lambda x: (x[1], get_exchange_reflected_stock_price(x[1], x[0]), x[2], x[3], x[4], x[0]), stock_inputs)
    
    for stock_code, new_price, quantity, target_weight, target_ratio, currency_code in results:
        portfolio[stock_code] = {'quantity': quantity, 'price': new_price, 'target_weight': target_weight, 'currency': currency_code}
        target_weights[stock_code] = target_ratio

    return portfolio, target_weights, krw_cash

def format_quantity(quantity):
    if quantity < 0:
        return f"({-quantity:,})"
    else:
        return f"{quantity:,}"

def get_portfolio_rebalancing_info(portfolio, target_weights, krw_cash):
    with open('portfolio.html', 'r', encoding='utf-8') as file:
        css = file.read()

    kst = pytz.timezone('Asia/Seoul')
    current_time = datetime.now(kst).strftime("%I:%M %p %b-%d-%Y")

    total_value = sum(stock['price'] * stock['quantity'] for stock in portfolio.values()) + krw_cash['amount']
    total_new_stock_value = 0
    total_trade_value = 0
    adjustments = []

    # Calculate current weights and values
    current_weights = {stock_code: (stock['price'] * stock['quantity'] / total_value) * 100 for stock_code, stock in portfolio.items()}
    current_values = {stock_code: stock['price'] * stock['quantity'] for stock_code, stock in portfolio.items()}
    
    # Include cash in current weights and values
    current_weights['CASH'] = (krw_cash['amount'] / total_value) * 100
    current_values['CASH'] = krw_cash['amount']

    # Sort stocks by current weight in descending order
    sorted_stocks = sorted(current_weights.items(), key=lambda x: x[1], reverse=True)

    # Display current weights and values section
    current_info_html = "<h3>Your Portfolio Holdings</h3><div class='table-container'><table style='border-collapse: collapse;'>"
    current_info_html += "<thead><tr><th style='border: 1px hidden #ddd; text-align: center;'>Stock Code</th><th style='border: 1px hidden #ddd; text-align: center;'>Current Weight (%)</th><th style='border: 1px hidden #ddd; text-align: center;'>Current Value</th></tr></thead><tbody>"
    for stock_code, weight in sorted_stocks:
        current_info_html += (
            f"<tr>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>{stock_code.upper()}</td>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>{weight:.1f}%</td>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>β‚©{current_values[stock_code]:,.0f}</td>"
            f"</tr>"
        )
    current_info_html += "</tbody></table></div><br>"

    for stock_code, stock_data in portfolio.items():
        current_value = stock_data['price'] * stock_data['quantity']
        target_value = total_value * target_weights.get(stock_code, 0)
        difference = target_value - current_value
        trade_quantity = math.floor(difference / stock_data['price']) if difference > 0 else -math.ceil(-difference / stock_data['price'])
        new_quantity = trade_quantity + stock_data['quantity']
        new_value = new_quantity * stock_data['price']
        trade_value = trade_quantity * stock_data['price']
        total_trade_value += abs(trade_value)
        total_new_stock_value += new_value
        current_value_pct = (current_value / total_value) * 100
        new_value_pct = (new_value / total_value) * 100

        adjustments.append((difference, current_value, target_value, current_value_pct, trade_quantity, stock_code, stock_data['price'], new_value, trade_value, stock_data['quantity'], new_quantity, target_weights[stock_code], new_value_pct, stock_data['target_weight'], stock_data['currency']))

    krw_new_amount = total_value - total_new_stock_value
    krw_target_value = total_value * krw_cash['target_weight']
    krw_difference = krw_new_amount - krw_cash['amount']
    trade_quantity = krw_difference
    new_quantity = krw_cash['amount'] + trade_quantity
    new_value = new_quantity
    trade_value = trade_quantity
    current_value = krw_cash['amount']
    current_value_pct = (current_value / total_value) * 100
    new_value_pct = (new_value / total_value) * 100

    adjustments.append((krw_difference, current_value, krw_target_value, current_value_pct, trade_quantity, 'CASH', 1, new_value, trade_value, krw_cash['amount'], new_quantity, krw_cash['target_weight'], new_value_pct, '', 'KRW'))

    portfolio_info = css + f"""
        <div><br>
            <p><span style='font-size: 1.6rem; font-weight: bold;'>β‚©{total_value:,.0f}</span> as of <span style='color: #6e6e73;'>{current_time}</span></p>
        <br></div>
        """

    currency_totals = {stock_data['currency']: {'amount': 0, 'weight': 0} for stock_data in portfolio.values()}

    for stock_code, stock_data in portfolio.items():
        currency = stock_data['currency']
        current_value = stock_data['price'] * stock_data['quantity']
        currency_totals[currency]['amount'] += current_value
        currency_totals[currency]['weight'] += current_value / total_value

    currency_totals['CASH'] = {'amount': krw_cash['amount'], 'weight': krw_cash['amount'] / total_value}
    sorted_currencies = sorted(currency_totals.items(), key=lambda x: x[1]['weight'], reverse=True)

    currency_table = "<h3>Your Portfolio by Currency</h3><div class='table-container'><table style='border-collapse: collapse;'>"
    currency_table += "<thead><tr><th style='border: 1px hidden #ddd; text-align: center;'>Currency</th><th style='border: 1px hidden #ddd; text-align: center;'>Total Weight (%)</th><th style='border: 1px hidden #ddd; text-align: center;'>Total Value</th></tr></thead><tbody>"

    for currency, data in sorted_currencies:
        currency_table += (
            f"<tr>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>{currency.upper()}</td>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>{data['weight'] * 100:.1f}%</td>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>β‚©{data['amount']:,}</td>"            
            f"</tr>"
        )

    currency_table += "</tbody></table></div><br>"

    result_message = portfolio_info + current_info_html + currency_table + "<h3>Re-Balancing Analysis</h3><div class='table-container'><table style='border-collapse: collapse;'>"
    result_message += "<thead><tr><th style='border: 1px hidden #ddd; text-align: center;'>Stock Code</th><th style='border: 1px hidden #ddd; text-align: center;'>Target Weight</th><th style='border: 1px hidden #ddd; text-align: center;'>Target Ratio (%)</th><th style='border: 1px hidden #ddd; text-align: center;'>Buy or Sell?</th><th style='border: 1px hidden #ddd; text-align: center;'>Trade Amount</th><th style='border: 1px hidden #ddd; text-align: center;'>Current Price per Share</th><th style='border: 1px hidden #ddd; text-align: center;'>Estimated # of<br> Shares to Buy or Sell</th><th style='border: 1px hidden #ddd; text-align: center;'>Quantity of Units</th><th style='border: 1px hidden #ddd; text-align: center;'>Market Value</th><th style='border: 1px hidden #ddd; text-align: center;'>% Asset Allocation</th></tr></thead><tbody>"

    for adj in adjustments:
        difference, current_value, target_value, current_value_pct, trade_quantity, stock_code, price, new_value, trade_value, old_quantity, new_quantity, target_ratio, new_value_pct, target_weight, currency = adj
        Buy_or_Sell = ""
        if trade_quantity > 0:
            Buy_or_Sell = f"<span class='buy-sell buy'>Buy</span>"
        elif trade_quantity < 0:
            Buy_or_Sell = f"<span class='buy-sell sell'>Sell</span>"
        else:
            Buy_or_Sell = f"<span></span>"

        price_str = f"β‚©{price:,.0f}" if stock_code != 'CASH' else ''
        target_weight_str = f"<span class='highlight-edit'>{target_weight}</span>" if stock_code != 'CASH' else ''
        target_ratio_str = f"<span class='highlight-edit'>{target_ratio * 100:.1f}%</span>" if stock_code == 'CASH' else f"{target_ratio * 100:.1f}%"
        old_quantity_str = f"{old_quantity:,.0f} β†’ {new_quantity:,.0f}" if stock_code != 'CASH' else ''
        trade_value_str = f"<span class='highlight-sky'>{format_quantity(trade_value)}</span>" if trade_value != 0 else ''
        trade_quantity_str = (
            f"<span class='highlight-sky'>{format_quantity(trade_quantity)}</span>"
            if stock_code != 'CASH' and trade_value != 0 else ''
        )
        new_value_str = f"β‚©{new_value:,.0f}"
        new_value_pct_str = f"{new_value_pct:.1f}%"

        result_message += (
            f"<tr>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>{stock_code.upper()}</td>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>{target_weight_str}</td>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>{target_ratio_str}</td>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>{Buy_or_Sell}</td>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>{trade_value_str}</td>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>{price_str}</td>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>{trade_quantity_str}</td>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>{old_quantity_str}</td>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>{new_value_str}</td>"
            f"<td style='border: 1px hidden #ddd; text-align: center;'>{new_value_pct_str}</td>"
            f"</tr>"
        )

    result_message += "</tbody></table></div>"
    
    return result_message

def rebalancing_tool(user_input, cash_amount, cash_ratio):
    try:
        stock_inputs, krw_cash = parse_input(user_input, cash_amount, cash_ratio)
        portfolio, target_weights, krw_cash = build_portfolio(stock_inputs, krw_cash)
        result = get_portfolio_rebalancing_info(portfolio, target_weights, krw_cash)
        return result
    except Exception as e:
        return str(e)

def get_stock_prices(stock_code, days):
    try:
        df = fdr.DataReader(stock_code, end=pd.Timestamp.now().date(), data_source='yahoo')
        df = df[df.index >= df.index.max() - pd.DateOffset(days=days)]  # 졜근 days일 λ°μ΄ν„°λ‘œ μ œν•œ
        return df['Close']
    except Exception as e:
        print(f"Failed to fetch data for {stock_code}: {e}")
        return None

def plot_stock_prices(stock_codes, days):
    # 주식 κ·Έλž˜ν”„ 생성을 μœ„ν•œ 병렬 처리
    stock_prices = {}
    with ThreadPoolExecutor() as executor:
        futures = {executor.submit(get_stock_prices, stock_code.strip(), int(days)): stock_code.strip() for stock_code in stock_codes.split(',')}
        for future in as_completed(futures):
            stock_code = futures[future]
            try:
                prices = future.result()
                if prices is not None:
                    stock_prices[stock_code] = prices
            except Exception as e:
                print(f"Failed to fetch data for {stock_code}: {e}")

    # 각 주식에 λŒ€ν•œ κ·Έλž˜ν”„λ₯Ό κ·Έλ¦Ό
    plt.figure(figsize=(10, 6))
    for stock_code, prices in stock_prices.items():
        relative_prices = prices / prices.iloc[0]  # 첫 번째 데이터 포인트λ₯Ό κΈ°μ€€μœΌλ‘œ μƒλŒ€μ  가격 계산
        plt.plot(prices.index, relative_prices, label=stock_code.upper())  # 주식 μ½”λ“œλ₯Ό λŒ€λ¬Έμžλ‘œ ν‘œμ‹œ
    plt.xlabel('Date')
    plt.ylabel('Relative Price (Normalized to 1)')
    plt.title(f'Relative Stock Prices Over the Last {days} Days')
    plt.legend()

    # κ·Έλž˜ν”„λ₯Ό HTML둜 λ³€ν™˜ν•˜μ—¬ λ°˜ν™˜
    html_graph = io.BytesIO()
    plt.savefig(html_graph, format='png', dpi=300)
    html_graph.seek(0)
    graph_encoded = base64.b64encode(html_graph.getvalue()).decode()
    graph_html = f'<img src="data:image/png;base64,{graph_encoded}"/>'

    return graph_html

def cost_averaging(old_avg_price, old_quantity, new_price, new_quantity):
    # μž…λ ₯값을 숫자둜 λ³€ν™˜
    old_avg_price = float(old_avg_price) if old_avg_price else 0.0
    old_quantity = float(old_quantity) if old_quantity else 0.0
    new_price = float(new_price) if new_price else 0.0
    new_quantity = float(new_quantity) if new_quantity else 0.0

    # ν˜„μž¬ 투자 κΈˆμ•‘ 계산
    current_investment = old_avg_price * old_quantity
    # μΆ”κ°€ 투자 κΈˆμ•‘ 계산
    additional_investment = new_price * new_quantity
    # 총 투자 κΈˆμ•‘
    total_investment = current_investment + additional_investment
    # 총 주식 수
    total_shares = old_quantity + new_quantity
    # μƒˆ 평균 가격 계산
    new_avg_price = total_investment / total_shares if total_shares != 0 else 0.0
    
    # ν˜„μž¬ 수읡λ₯  계산
    current_return = (new_price - old_avg_price) / old_avg_price * 100 if old_avg_price != 0 else 0.0
    # μƒˆλ‘œμš΄ 수읡λ₯  계산
    new_return = (new_price / new_avg_price - 1 ) * 100 if new_avg_price != 0 else 0.0
    return new_avg_price, total_shares, total_investment, current_return, new_return, additional_investment

def gradio_cost_averaging(old_avg_price, old_quantity, new_price, new_quantity):
    with open('portfolio.html', 'r', encoding='utf-8') as file:
        css = file.read()

    # μž…λ ₯값을 숫자둜 λ³€ν™˜
    old_avg_price = float(old_avg_price) if old_avg_price else 0.0
    old_quantity = float(old_quantity) if old_quantity else 0.0
    new_price = float(new_price) if new_price else 0.0
    new_quantity = float(new_quantity) if new_quantity else 0.0

    new_avg_price, total_shares, total_investment, current_return, new_return, additional_investment = cost_averaging(old_avg_price, old_quantity, new_price, new_quantity)
    
    current_return_class = ""
    if current_return > 0:
        current_return_class = f"<span style='color: #4caf50; font-weight: bold;'>{current_return:+,.2f}%</span>"
    elif current_return < 0:
        current_return_class = f"<span style='color: #f44336; font-weight: bold;'>{current_return:,.2f}%</span>"
    else:
        current_return_class = f"<span><strong>0</strong></span>"

    new_return_class = ""
    if new_return > 0:
        new_return_class = f"<span style='color: #4caf50; font-weight: bold;'>{new_return:+,.2f}%</span>"
    elif current_return < 0:
        new_return_class = f"<span style='color: #f44336; font-weight: bold;'>{new_return:,.2f}%</span>"
    else:
        new_return_class = f"<span><strong>0</strong></span>"

    # Construct the HTML string with the appropriate class
    result_html = css+ f"""
<div style="box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); border-radius: 8px; padding: 48px; position: relative; width: 100%; padding: 24px;">
    <div>
        <div style="margin-bottom: 24px;">
            <div style="font-size: 24px; margin-bottom: 24px;">Average Price</div>
            <div style="font-size: 24px; font-weight: bold; color: #1c75bc;">
                <span></span>
                <span>{new_avg_price:,.0f}</span>
            </div>
            <hr style="margin: 24px 0;">
        </div>
    </div>
    <div>
        <div style="margin-bottom: 24px;">
            <div style="font-size: 24px; margin-bottom: 24px;">Total Quantity</div>
            <div style="font-size: 24px; font-weight: bold; color: #1c75bc;">
                <span>{total_shares:,.0f}</span>
            </div>
            <hr style="margin: 24px 0;">
        </div>
    </div>
    <div>
        <div style="margin-bottom: 24px;">
            <div style="font-size: 24px; margin-bottom: 24px;">Total Investment</div>
            <div style="font-size: 24px; font-weight: bold; color: #1c75bc;">
                <span></span>
                <span>{total_investment:,.0f}</span>
            </div>
            <hr style="margin: 24px 0;">
        </div>
    </div>
    <div style='display: flex; justify-content: space-around; align-items: center;'>
        <div style='text-align: center;'>
            <div style="margin-bottom: 24px;">
                <div style="font-size: 24px; margin-bottom: 24px;"></div>
                <div style="font-size: 24px; font-weight: bold; color: #1c75bc;">
                    <p></p>
                    <p>{current_return_class}</p>
                    <p>{old_avg_price:,.0f}</p>
                </div>
            </div>
        </div>
        <div style='text-align: center; margin-bottom: 24px; font-size: 24px;'>➜</div>
        <div style='text-align: center;'>
            <div style="margin-bottom: 24px;">
                <div style="font-size: 24px; margin-bottom: 24px;"></div>
                <div style="font-size: 24px; font-weight: bold; color: #1c75bc;">
                    <p></p>
                    <p>{new_return_class}</p>
                    <p>{new_avg_price:,.0f}</p>
                </div>
            </div>
        </div>
    </div>
    <p style='text-align: center;'>총 μΆ”κ°€ κΈˆμ•‘: <strong>{additional_investment:,.0f}</strong></p>
</div>

    """

    return result_html





# Define the interface for the Portfolio tab
def portfolio_interface(input_text, cash_amount, cash_ratio):
    result = rebalancing_tool(input_text, cash_amount, cash_ratio)
    return result

portfolio_inputs = [
    gr.Textbox(label="πŸ”₯ Holdings", lines=2, placeholder="Format: [stock code  currency  quantity  target weight,    ...]"),
    gr.Number(label="πŸͺ΅ Cash", value=""),
    gr.Slider(label="βš–οΈ Cash Ratio (%)", minimum=0, maximum=100, step=1)
]

portfolio_interface = gr.Interface(
    fn=portfolio_interface,
    inputs=portfolio_inputs,
    outputs=gr.HTML(),
    # examples = [
    # ["458730 krw 571 8,\n368590 krw 80 2", 17172, 0],
    # ["SCHD USD 400 8,\nQQQ USD 40 2", 1000000, 25],
    # ["458730 krw 571 8,\n368590 krw 80 2,\nSCHD USD 400 8,\nQQQ USD 40 2", 1000000, 25]
    # ],
    live=True
)

# Define the interface for the Compare tab
def compare_interface(stock_codes, period):
    result = plot_stock_prices(stock_codes, period)
    return result

compare_inputs = [
    gr.Textbox(label="πŸ“ˆ Stock Codes", lines=2, placeholder="Enter stock codes separated by comma (e.g., AAPL,GOOGL,MSFT)"),
    gr.Number(label="πŸ“† Period (days)", value=90)
]

compare_interface = gr.Interface(
    fn=compare_interface,
    inputs=compare_inputs,
    outputs=gr.HTML(),
    # examples = [
    # ["SCHD,QQQ", 90],
    # ["458730,368590", 90],
    # ["AAPL,GOOGL,MSFT", 90]
    # ],
    live=False
)

# Define the interface for the Cost Averaging tab
def cost_averaging_interface(old_avg_price, old_quantity, new_price, new_quantity):
    result = gradio_cost_averaging(old_avg_price, old_quantity, new_price, new_quantity)
    return result

cost_averaging_inputs = [
    gr.Number(label="Old Price", value=""),
    gr.Number(label="Quantity", value=""),
    gr.Number(label="New Price", value=""),
    gr.Number(label="Quantity", value="")
]

cost_averaging_interface = gr.Interface(
    fn=cost_averaging_interface,
    inputs=cost_averaging_inputs,
    outputs=gr.HTML(),
    # examples = [
    # [78.15, 6.024272, 77.11, 1]
    # ],
    live=True
)

# Combine all interfaces into a tabbed interface
with gr.Blocks(css='style.css') as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Tabs():
            with gr.TabItem("Portfolio"):
                portfolio_interface.render()
            with gr.TabItem("Compare"):
                compare_interface.render()
            with gr.TabItem("Cost Averaging"):
                cost_averaging_interface.render()
            with gr.TabItem("πŸ“„ About"):
                gr.Markdown("""
                # About This Application

                Welcome to the Portfolio Management Tool! This application provides a comprehensive suite of tools to help you manage and analyze your investment portfolio. Below is a brief overview of each feature available in this tool.

                ## πŸ“Š Portfolio

                **Description:**  
                This section allows you to analyze and rebalance your investment portfolio. You can input your current holdings, cash amount, and desired cash ratio, and the tool will calculate the necessary trades to achieve your target allocation.

                **How to Use:**  
                1. Enter your holdings in the format: `[stock code currency quantity target weight]`.
                2. Specify your cash amount and desired cash ratio.
                3. Click the "Analyze Data" button to see the rebalancing analysis.
                4. View the detailed breakdown of your current portfolio and suggested trades.

                ## πŸ“ˆ Compare

                **Description:**  
                This feature enables you to compare the historical prices of multiple stocks over a specified period. It provides a visual comparison to help you understand the performance of different stocks.

                **How to Use:**  
                1. Enter the stock codes separated by commas (e.g., AAPL, GOOGL, MSFT).
                2. Specify the period in days for which you want to compare the stock prices.
                3. Click the "Compare Stock Prices" button to generate the comparison graph.
                4. View the relative price changes of the selected stocks over the chosen period.

                ## πŸ’Ή Cost Averaging

                **Description:**  
                This section helps you calculate the new average price of a stock when you make additional purchases. It also provides insights into the current and new return rates based on your investments.

                **How to Use:**  
                1. Enter the average price and quantity of your initial purchase in the "First Purchase" section.
                2. Enter the price and quantity of your subsequent purchase in the "Second Purchase" section.
                3. Click the "Calculate Cost Averaging" button to see the results.
                4. View the new average price, total quantity, total investment, and return rates.

                ## πŸ“„ About

                **Description:**  
                This section provides an overview of the application, explaining its features and how to use them. It serves as a guide for new users to understand the functionalities available in the tool.

                **How to Use:**  
                Simply read through the information provided to get acquainted with the application's capabilities.

                ## Disclaimer

                Please note that this tool is for informational purposes only and does not constitute financial advice. Always conduct your own research or consult with a financial advisor before making investment decisions.

                ---

                We hope you find this tool useful for managing your investments. If you have any feedback or suggestions, feel free to reach out!

                Happy Investing!
                """)

demo.launch(share=True)