File size: 6,031 Bytes
8ad2ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from typing import List, Dict
import librosa
import numpy as np
import spacy
import math
from .filler_analyzer import detect_fillers

def calc_srs(wpm: float, filler_count: int, long_pause_count: int, pitch_variation: float) -> float:
    """
    Speech Rate Stability (SRS): Reflects the consistency of the speaker's pace and rhythm.
    """
    ideal_wpm = 150
    wpm_deviation = min(30, abs(wpm - ideal_wpm))
    wpm_consistency = max(0, 100 - (wpm_deviation * 1.67))

    filler_penalty = min(filler_count / 10, 1.0)
    pause_penalty = min(long_pause_count / 5, 1.0)
    pitch_penalty = min(pitch_variation / 3.0, 1.0)

    stability = (1 - ((filler_penalty + pause_penalty + pitch_penalty) / 3)) * 100
    SRS = (0.45 * wpm_consistency) + (0.55 * stability)
    return min(100, max(0, SRS))

def calculate_pas(transcript: str, segments: List[Dict], filler_count: int, duration: float) -> Dict[str, float]:
    """
    Calculate the Pause Appropriateness Score (PAS) and its components.
    """
    if not transcript or not segments or duration <= 0:
        raise ValueError("Transcript, segments, and duration must be valid")
    
    nlp = spacy.load("en_core_web_sm")
    doc = nlp(transcript)
    
    words = transcript.split()
    total_words = len(words)
    if total_words == 0:
        raise ValueError("No words found in transcript")
    
    filler_rate = filler_count / total_words if total_words > 0 else 0.0
    if filler_rate >= 0.10:
        afw = 0.0
    elif filler_rate <= 0.0:
        afw = 100.0
    else:
        afw = 100.0 - (filler_rate * 1000)
    afw = max(0.0, min(100.0, afw))
    
    total_pauses = 0
    natural_pauses = 0
    segment_texts = [seg["text"].strip() for seg in segments]
    segment_starts = [seg["start"] for seg in segments]
    segment_ends = [seg["end"] for seg in segments]
    
    for i in range(len(segments) - 1):
        pause_dur = segment_starts[i + 1] - segment_ends[i]
        if pause_dur > 0.5:
            total_pauses += 1
            if segment_texts[i] and segment_texts[i][-1] in ".!?,": 
                natural_pauses += 1
    
    if segment_starts[0] > 0.5:
        total_pauses += 1
    if duration - segment_ends[-1] > 0.5:
        total_pauses += 1
        if segment_texts[-1] and segment_texts[-1][-1] in ".!?":
            natural_pauses += 1
    
    npp = 100.0 if total_pauses == 0 else (natural_pauses / total_pauses) * 100.0
    pas = (0.4 * npp) + (0.6 * afw)
    
    return {
        "NPP": npp,
        "AFW": afw,
        "PAS": pas
    }

def calculate_rcs(y: np.ndarray, sr: int, segments: List[Dict], duration: float) -> Dict[str, float]:
    """
    Calculate the Rhythm Consistency Score (RCS) and its components.
    """
    if y.size == 0 or sr <= 0 or duration <= 0 or not segments:
        raise ValueError("Audio signal, sampling rate, duration, and segments must be valid")
    
    onset_env = librosa.onset.onset_strength(y=y, sr=sr, hop_length=256)
    onsets = librosa.onset.onset_detect(onset_envelope=onset_env, sr=sr, units='time', hop_length=256)
    
    if len(onsets) > 1:
        iois = np.diff(onsets)
        ioi_std = np.std(iois)
        ioi_std = min(max(ioi_std, 0.1), 0.5)
        str_score = 100.0 * (0.5 - ioi_std) / (0.5 - 0.1)
        str_score = max(0.0, min(100.0, str_score))
    else:
        str_score = 100.0
    
    total_transitions = 0
    smooth_transitions = 0
    pause_threshold = 0.3
    
    for i in range(len(segments) - 1):
        gap = segments[i + 1]["start"] - segments[i]["end"]
        total_transitions += 1
        if gap <= pause_threshold:
            smooth_transitions += 1
    
    for segment in segments:
        words = segment["text"].strip().split()
        if len(words) > 1:
            smooth_transitions += len(words) - 1
            total_transitions += len(words) - 1
    
    stw = 100.0 if total_transitions == 0 else (smooth_transitions / total_transitions) * 100.0
    rcs = (0.5 * str_score) + (0.5 * stw)
    
    return {
        "STR": str_score,
        "STW": stw,
        "RCS": rcs
    }

def calculate_vps(
    transcript: str,
    segments: List[Dict],
    filler_count: int,
    duration: float,
    wpm: float,
    long_pause_count: int,
    pitch_variation: float,
    y: np.ndarray,
    sr: int
) -> Dict[str, float]:
    """
    Calculate the Voice Pacing Score (VPS) and its components:
    - SRS: Speech Rate Stability Score
    - PAS: Pause Appropriateness Score
    - RCS: Rhythm Consistency Score
    - VPS = (0.5 * SRS) + (0.3 * PAS) + (0.2 * RCS)
    
    Args:
        transcript (str): Transcribed text.
        segments (List[Dict]): Whisper model segments with 'start', 'end', 'text'.
        filler_count (int): Number of filler words.
        duration (float): Audio duration (seconds).
        wpm (float): Words per minute.
        long_pause_count (int): Number of long pauses (>1.0s).
        pitch_variation (float): Pitch variation in semitones.
        y (np.ndarray): Audio signal.
        sr (int): Sampling rate.
    
    Returns:
        Dict[str, float]: Scores for SRS, PAS, RCS, VPS, and intermediates.
    """
    # Validate inputs
    if not transcript or not segments or duration <= 0 or y.size == 0 or sr <= 0:
        raise ValueError("Invalid inputs")
    
    # Calculate SRS
    srs = calc_srs(wpm, filler_count, long_pause_count, pitch_variation)
    
    # Calculate PAS
    pas_result = calculate_pas(transcript, segments, filler_count, duration)
    pas = pas_result["PAS"]
    npp = pas_result["NPP"]
    afw = pas_result["AFW"]
    
    # Calculate RCS
    rcs_result = calculate_rcs(y, sr, segments, duration)
    rcs = rcs_result["RCS"]
    str_score = rcs_result["STR"]
    stw = rcs_result["STW"]
    
    # Calculate VPS
    vps = (0.5 * srs) + (0.3 * pas) + (0.2 * rcs)
    vps = max(0.0, min(100.0, vps))
    
    return {
        "SRS": srs,
        "PAS": pas,
        "NPP": npp,
        "AFW": afw,
        "RCS": rcs,
        "STR": str_score,
        "STW": stw,
        "VPS": vps
    }