File size: 12,046 Bytes
8ad2ab3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import scipy.signal
import numpy as np
import librosa
import pyworld as pw
# def compute_pitch_variation(file_path):
# # Step 1: Load audio
# y, sr = librosa.load(file_path, sr=None)
# y = y.astype(np.float64) # pyworld expects float64
# # Step 2: Extract pitch (F0)
# _f0, t = pw.dio(y, sr) # Fast initial pitch estimation
# f0 = pw.stonemask(y, _f0, t, sr) # Refinement step
# # Step 3: Filter voiced frames
# voiced_f0 = f0[f0 > 0]
# # Handle empty case
# if voiced_f0.size == 0:
# return {
# "pitch_mean": 0.0,
# "pitch_std": 0.0,
# "pitch_range": 0.0,
# "semitone_std": 0.0,
# "pitch_variation_score": 0.0
# }
# # Step 4: Basic statistics
# pitch_mean = np.mean(voiced_f0)
# pitch_std = np.std(voiced_f0)
# pitch_range = np.max(voiced_f0) - np.min(voiced_f0)
# print(pitch_mean)
# print(f'voiced_f0: {voiced_f0}')
# # Step 5: Compute semitone-based variation (better for human perception)
# median_f0 = np.median(voiced_f0)
# if median_f0 <= 0:
# median_f0 = 1e-6 # Avoid division by zero
# semitone_diffs = 12 * np.log2(voiced_f0 / median_f0)
# semitone_std = np.std(semitone_diffs)
# print(semitone_std)
# # Step 6: Scale semitone_std to a 0β100 score (tunable)
# # For example: semitone_std of 0 β 0 score, β₯6 semitones β 100 score
# pitch_variation_score = np.clip((semitone_std / 6.0) * 100, 0, 100)
# return {
# "pitch_mean": pitch_mean,
# "pitch_std": pitch_std,
# "pitch_range": pitch_range,
# "semitone_std": semitone_std,
# "pitch_variation_score": pitch_variation_score
# }
# def compute_intonation_range(file_path):
# # Step 1: Load and prepare audio
# y, sr = librosa.load(file_path, sr=None)
# y = y.astype(np.float64)
# # Step 2: Extract F0
# _f0, t = pw.dio(y, sr)
# f0 = pw.stonemask(y, _f0, t, sr)
# # Step 3: Filter voiced frames
# voiced_f0 = f0[f0 > 0]
# if voiced_f0.size == 0:
# return 0.0
# voiced_f0 = voiced_f0[(voiced_f0 > np.percentile(voiced_f0, 5)) &
# (voiced_f0 < np.percentile(voiced_f0, 95))]
# # Step 4: Compute intonation range (in semitones)
# f0_min = np.min(voiced_f0)
# f0_max = np.max(voiced_f0)
# if f0_min <= 0:
# f0_min = 1e-6 # to avoid log error
# intonation_range = 12 * np.log2(f0_max / f0_min)
# # range into scores:
# max_range = 12.0
# normalized = min(intonation_range, max_range) / max_range
# score = normalized * 100
# return round(score, 2), intonation_range
# def compute_pitch_variation(file_path):
# # Step 1: Load audio
# y, sr = librosa.load(file_path, sr=None)
# # Step 2: Extract pitch using librosa.pyin (YIN-based)
# f0, voiced_flags, voiced_probs = librosa.pyin(
# y,
# sr=sr,
# fmin=80,
# fmax=400,
# frame_length=1105,
# hop_length=256,
# fill_na=np.nan
# )
# # Step 3: Filter voiced frames
# voiced_f0 = f0[~np.isnan(f0)]
# voiced_f0 = voiced_f0[
# (voiced_f0 > np.percentile(voiced_f0, 5)) &
# (voiced_f0 < np.percentile(voiced_f0, 95))
# ]
# # Handle empty case
# if voiced_f0.size == 0:
# return {
# "pitch_mean": 0.0,
# "pitch_std": 0.0,
# "pitch_range": 0.0,
# "semitone_std": 0.0,
# "pitch_variation_score": 0.0
# }
# # Step 4: Basic statistics
# pitch_mean = float(np.mean(voiced_f0))
# pitch_std = float(np.std(voiced_f0))
# pitch_range = float(np.max(voiced_f0) - np.min(voiced_f0))
# # Step 5: Compute semitone-based variation
# median_f0 = np.median(voiced_f0)
# if median_f0 <= 0:
# median_f0 = 1e-6
# semitone_diffs = 12 * np.log2(voiced_f0 / median_f0)
# semitone_std = float(np.std(semitone_diffs))
# # Step 6: Scale to 0β100 score
# pitch_variation_score = float(np.clip((semitone_std / 6.0) * 100, 0, 100))
# return {
# "pitch_mean": pitch_mean,
# "pitch_std": pitch_std,
# "pitch_range": pitch_range,
# "semitone_std": semitone_std,
# "pitch_variation_score": pitch_variation_score
# }
# def compute_intonation_range(file_path):
# # Step 1: Load and prepare audio
# y, sr = librosa.load(file_path, sr=None)
# # Step 2: Extract F0 using librosa.pyin
# f0, voiced_flags, voiced_probs = librosa.pyin(
# y,
# sr=sr,
# fmin=80,
# fmax=400,
# frame_length=1105, # ensures two periods of fmin fit
# hop_length=256,
# fill_na=np.nan
# )
# # Step 3: Filter voiced frames
# voiced_f0 = f0[~np.isnan(f0)]
# if voiced_f0.size == 0:
# return 0.0, 0.0
# # Optional: remove outliers (5th to 95th percentile)
# voiced_f0 = voiced_f0[
# (voiced_f0 > np.percentile(voiced_f0, 5)) &
# (voiced_f0 < np.percentile(voiced_f0, 95))
# ]
# # Step 4: Compute intonation range in semitones
# f0_min = np.min(voiced_f0)
# f0_max = np.max(voiced_f0)
# if f0_min <= 0:
# f0_min = 1e-6
# intonation_range = 12 * np.log2(f0_max / f0_min)
# # Step 5: Normalize and convert to score out of 100
# max_range = 12.0 # ~1 octave
# normalized = min(intonation_range, max_range) / max_range
# score = normalized * 100
# return round(score, 2), float(intonation_range)
# def compute_speech_rhythm_variability(file_path):
# """
# Computes the speech rhythm variability score from an audio file.
# The method estimates tempo consistency across time using onset intervals.
# Returns:
# score (float): Normalized rhythm variability score out of 100.
# raw_std (float): Raw standard deviation of inter-onset intervals.
# """
# # Step 1: Load audio
# y, sr = librosa.load(file_path, sr=None)
# # Step 2: Onset detection
# onset_env = librosa.onset.onset_strength(y=y, sr=sr)
# onsets = librosa.onset.onset_detect(onset_envelope=onset_env, sr=sr, units='time')
# if len(onsets) < 2:
# return 0.0, 0.0 # Not enough onsets to compute rhythm
# # Step 3: Compute inter-onset intervals (IOIs) as rhythm proxy
# iois = np.diff(onsets)
# # Optional: Remove outliers (5thβ95th percentile)
# ioi_clean = iois[(iois > np.percentile(iois, 5)) & (iois < np.percentile(iois, 95))]
# if len(ioi_clean) < 2:
# return 0.0, 0.0
# # Step 4: Compute variability β standard deviation of IOIs
# raw_std = np.std(ioi_clean)
# # Step 5: Normalize raw_std to 0β100 score
# # Lower std = more consistent rhythm β higher score
# min_std = 0.05 # near-perfect rhythm (tight pacing)
# max_std = 0.6 # highly irregular rhythm
# # Clamp and reverse-score
# clamped_std = np.clip(raw_std, min_std, max_std)
# normalized = 1 - (clamped_std - min_std) / (max_std - min_std)
# score = normalized * 100
# return round(score, 2), round(float(raw_std), 4)
# def calc_sds(file_path):
# # sds = 0.35 * pitch_variation + 0.35 * intonation_range + 0.3 * speech_rhythm_variability
# pitch_variation = compute_pitch_variation(file_path)
# intonation_range = compute_intonation_range(file_path)
# speech_rhythm_variability = compute_speech_rhythm_variability(file_path)
# # print(f"Speech Rhythm Variability Score: {speech_rhythm_variability}")
# # print(f"Speech Rhythm Variability Score: {speech_rhythm_variability}")
# # print(f"Speech Rhythm Variability Score: {speech_rhythm_variability}")
# sds = 0.35 * pitch_variation['pitch_variation_score'] + 0.35 * intonation_range[0] + 0.3 * speech_rhythm_variability[0]
# return round(sds, 2)
# path = r'D:\Intern\shankh\audio_samples\anga.wav'
# result = calc_sds(path)
# print(f"SDS: {result}")
import numpy as np
import librosa
import pyworld
def compute_pitch_variation(file_path):
# Step 1: Load audio
y, sr = librosa.load(file_path, sr=None)
# Step 2: Extract pitch using pyworld
_f0, t = pyworld.harvest(y.astype(np.float64), sr, f0_floor=80.0, f0_ceil=400.0, frame_period=1000 * 256 / sr)
f0 = pyworld.stonemask(y.astype(np.float64), _f0, t, sr)
# Step 3: Filter voiced frames
voiced_f0 = f0[f0 > 0]
# Remove outliers (5th to 95th percentile)
voiced_f0 = voiced_f0[
(voiced_f0 > np.percentile(voiced_f0, 5)) &
(voiced_f0 < np.percentile(voiced_f0, 95))
]
if voiced_f0.size == 0:
return {
"pitch_mean": 0.0,
"pitch_std": 0.0,
"pitch_range": 0.0,
"semitone_std": 0.0,
"pitch_variation_score": 0.0
}
# Step 4: Basic statistics
pitch_mean = float(np.mean(voiced_f0))
pitch_std = float(np.std(voiced_f0))
pitch_range = float(np.max(voiced_f0) - np.min(voiced_f0))
# Step 5: Semitone-based variation
median_f0 = np.median(voiced_f0)
if median_f0 <= 0:
median_f0 = 1e-6
semitone_diffs = 12 * np.log2(voiced_f0 / median_f0)
semitone_std = float(np.std(semitone_diffs))
# Step 6: Scaled variation score
pitch_variation_score = float(np.clip((semitone_std / 6.0) * 100, 0, 100))
return {
"pitch_mean": pitch_mean,
"pitch_std": pitch_std,
"pitch_range": pitch_range,
"semitone_std": semitone_std,
"pitch_variation_score": pitch_variation_score
}
def compute_intonation_range(file_path):
# Step 1: Load audio
y, sr = librosa.load(file_path, sr=None)
# Step 2: Extract pitch using pyworld
_f0, t = pyworld.harvest(y.astype(np.float64), sr, f0_floor=80.0, f0_ceil=400.0, frame_period=1000 * 256 / sr)
f0 = pyworld.stonemask(y.astype(np.float64), _f0, t, sr)
# Step 3: Filter voiced frames
voiced_f0 = f0[f0 > 0]
if voiced_f0.size == 0:
return 0.0, 0.0
# Remove outliers
voiced_f0 = voiced_f0[
(voiced_f0 > np.percentile(voiced_f0, 5)) &
(voiced_f0 < np.percentile(voiced_f0, 95))
]
if voiced_f0.size == 0:
return 0.0, 0.0
# Step 4: Compute intonation range
f0_min = np.min(voiced_f0)
f0_max = np.max(voiced_f0)
if f0_min <= 0:
f0_min = 1e-6
intonation_range = 12 * np.log2(f0_max / f0_min)
# Step 5: Normalize
max_range = 12.0
normalized = min(intonation_range, max_range) / max_range
score = normalized * 100
return round(score, 2), float(intonation_range)
def compute_speech_rhythm_variability(file_path):
"""
Computes the speech rhythm variability score from an audio file.
The method estimates tempo consistency across time using onset intervals.
"""
y, sr = librosa.load(file_path, sr=None)
# Step 2: Onset detection
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
onsets = librosa.onset.onset_detect(onset_envelope=onset_env, sr=sr, units='time')
if len(onsets) < 2:
return 0.0, 0.0
iois = np.diff(onsets)
ioi_clean = iois[(iois > np.percentile(iois, 5)) & (iois < np.percentile(iois, 95))]
if len(ioi_clean) < 2:
return 0.0, 0.0
raw_std = np.std(ioi_clean)
min_std = 0.05
max_std = 0.6
clamped_std = np.clip(raw_std, min_std, max_std)
normalized = 1 - (clamped_std - min_std) / (max_std - min_std)
score = normalized * 100
return round(score, 2), round(float(raw_std), 4)
def calc_sds(file_path):
pitch_variation = compute_pitch_variation(file_path)
intonation_range = compute_intonation_range(file_path)
speech_rhythm_variability = compute_speech_rhythm_variability(file_path)
sds = 0.35 * pitch_variation['pitch_variation_score'] + \
0.35 * intonation_range[0] + \
0.3 * speech_rhythm_variability[0]
return round(sds, 2)
|