File size: 1,624 Bytes
da716ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
""" Adaptive Gradient Clipping
An impl of AGC, as per (https://arxiv.org/abs/2102.06171):
@article{brock2021high,
author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
title={High-Performance Large-Scale Image Recognition Without Normalization},
journal={arXiv preprint arXiv:},
year={2021}
}
Code references:
* Official JAX impl (paper authors): https://github.com/deepmind/deepmind-research/tree/master/nfnets
* Phil Wang's PyTorch gist: https://gist.github.com/lucidrains/0d6560077edac419ab5d3aa29e674d5c
Hacked together by / Copyright 2021 Ross Wightman
"""
import torch
def unitwise_norm(x, norm_type=2.0):
if x.ndim <= 1:
return x.norm(norm_type)
else:
# works for nn.ConvNd and nn,Linear where output dim is first in the kernel/weight tensor
# might need special cases for other weights (possibly MHA) where this may not be true
return x.norm(norm_type, dim=tuple(range(1, x.ndim)), keepdim=True)
def adaptive_clip_grad(parameters, clip_factor=0.01, eps=1e-3, norm_type=2.0):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
for p in parameters:
if p.grad is None:
continue
p_data = p.detach()
g_data = p.grad.detach()
max_norm = unitwise_norm(p_data, norm_type=norm_type).clamp_(min=eps).mul_(clip_factor)
grad_norm = unitwise_norm(g_data, norm_type=norm_type)
clipped_grad = g_data * (max_norm / grad_norm.clamp(min=1e-6))
new_grads = torch.where(grad_norm < max_norm, g_data, clipped_grad)
p.grad.detach().copy_(new_grads)
|