File size: 1,624 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
""" Adaptive Gradient Clipping

An impl of AGC, as per (https://arxiv.org/abs/2102.06171):

@article{brock2021high,
  author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
  title={High-Performance Large-Scale Image Recognition Without Normalization},
  journal={arXiv preprint arXiv:},
  year={2021}
}

Code references:
  * Official JAX impl (paper authors): https://github.com/deepmind/deepmind-research/tree/master/nfnets
  * Phil Wang's PyTorch gist: https://gist.github.com/lucidrains/0d6560077edac419ab5d3aa29e674d5c

Hacked together by / Copyright 2021 Ross Wightman
"""
import torch


def unitwise_norm(x, norm_type=2.0):
    if x.ndim <= 1:
        return x.norm(norm_type)
    else:
        # works for nn.ConvNd and nn,Linear where output dim is first in the kernel/weight tensor
        # might need special cases for other weights (possibly MHA) where this may not be true
        return x.norm(norm_type, dim=tuple(range(1, x.ndim)), keepdim=True)


def adaptive_clip_grad(parameters, clip_factor=0.01, eps=1e-3, norm_type=2.0):
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    for p in parameters:
        if p.grad is None:
            continue
        p_data = p.detach()
        g_data = p.grad.detach()
        max_norm = unitwise_norm(p_data, norm_type=norm_type).clamp_(min=eps).mul_(clip_factor)
        grad_norm = unitwise_norm(g_data, norm_type=norm_type)
        clipped_grad = g_data * (max_norm / grad_norm.clamp(min=1e-6))
        new_grads = torch.where(grad_norm < max_norm, g_data, clipped_grad)
        p.grad.detach().copy_(new_grads)