File size: 9,046 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
from tqdm import tqdm
import argparse
import cv2
import numpy as np
from torchvision import transforms
from datasets import Dataset, concatenate_datasets
from pytorch_grad_cam import GradCAM

from timm.models import create_model, load_checkpoint
from timm.data import create_transform
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget


if not os.path.isdir('results/grad_cam/correct'):
    os.mkdir('results/grad_cam/correct')
if not os.path.isdir('results/grad_cam/incorrect'):
    os.mkdir('results/grad_cam/incorrect')

def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', default='tpmlp_s', type=str, metavar='MODEL',
                    help='path to latest checkpoint (default: none)')
    parser.add_argument('--checkpoint', default='/home/daa5724/tpmlp-s-300-ema/last.pth.tar', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
    parser.add_argument('--idx', default='[1374, 27826, 14327, 1828, 31787, 21083, 38902, 7912, 10089, 16915, 20986, 35716, 15233, 20648, 30566, 20150, 45538, 42359, 39683, 20329, 20868, 48557, 10569, 37167, 11163, 6688, 21910, 44528, 10660, 13919, 10098, 46981, 36560, 14231, 45372, 6262, 23684, 16895, 17036, 15670, 35393, 26758, 18572, 48064, 29773, 25437, 5494, 12825, 25737, 45244, 16877, 29958, 38519, 5338, 46210, 15154, 15040, 15783, 13640, 14420, 26836, 38155, 45094, 33282, 13362, 42975, 38779, 24298, 20632, 48373, 28662, 21869, 37940, 25953, 29360, 9428, 22352, 6498, 2014, 9666, 30364, 21129, 43259, 16148, 31559, 4508, 42773, 8180, 17194, 46614, 23580, 3039, 36980, 35809, 860, 35940, 9670, 33552, 35731, 23777, 15272, 47792, 20589, 12044, 24154, 24852, 2090, 16158, 12333, 4109, 7612, 22611, 12808, 38787, 41688, 23714, 17498, 29326, 12237, 28137, 38521, 24060, 31545, 46094, 34674, 18182, 28380, 34046]', type=str, metavar='IDX',
                    help='list of indices to use (default: [...]')
    parser.add_argument('--use-cuda', action='store_true', default=False,
                        help='Use NVIDIA GPU acceleration')
    parser.add_argument('--aug_smooth', action='store_true',
                        help='Apply test time augmentation to smooth the CAM')
    parser.add_argument(
        '--eigen_smooth',
        action='store_true',
        help='Reduce noise by taking the first principle componenet'
        'of cam_weights*activations')

    args = parser.parse_args()
    args.use_cuda = True
    if args.use_cuda:
        print('Using GPU for acceleration')
    else:
        print('Using CPU for computation')

    return args


if __name__ == '__main__':
    args = get_args()
    
    model = create_model(
        args.model,
        num_classes=1000,
        in_chans=3,
    )
    load_checkpoint(model, args.checkpoint, True)
    
    # Choose the target layer you want to compute the visualization for.
    # Usually this will be the last convolutional layer in the model.
    # Some common choices can be:
    # Resnet18 and 50: model.layer4
    # VGG, densenet161: model.features[-1]
    # mnasnet1_0: model.layers[-1]
    # You can print the model to help chose the layer
    # You can pass a list with several target layers,
    # in that case the CAMs will be computed per layer and then aggregated.
    # You can also try selecting all layers of a certain type, with e.g:
    # from pytorch_grad_cam.utils.find_layers import find_layer_types_recursive
    # find_layer_types_recursive(model, [torch.nn.ReLU])
    target_layers = [model.layers[3]]

    dataset = concatenate_datasets([Dataset.from_file(f"../../imagenet-1k/imagenet-1k-validation-{i:05d}-of-00013.arrow",) for i in range(13)])
    # loader = create_loader(
    #     dataset,
    #     input_size=(3, 224, 224),
    #     batch_size=1,
    #     use_prefetcher=False,
    #     interpolation='bicubic',
    #     mean=[0.485, 0.456, 0.406],
    #     std=[0.229, 0.224, 0.225],
    #     num_workers=4,
    #     crop_pct=.9,
    #     crop_mode='center',
    #     pin_memory=False,
    #     device="cuda",
    #     tf_preprocessing=False
    # )
    augs = create_transform(
        input_size=(3, 224, 224),
        is_training=False,
        use_prefetcher=False,
        crop_pct=0.9,
    )
    resize = transforms.Compose(augs.transforms[:-1])
    normalize = augs.transforms[-1]
    def transform(img):
        img = resize(img.convert("RGB"))
        tensor = normalize(img)
        return img, tensor[None]
        
    # assert rgb_img.min() > -1e-5 and rgb_img.max() < 1 + 1e-5
    # rgb_img = cv2.imread(args.image_path, 1)[:, :, ::-1]
    

    # rgb_img = np.float32(rgb_img) / 255
    # input_tensor = preprocess_image(rgb_img,
    #                                 mean=[0.485, 0.456, 0.406],
    #                                 std=[0.229, 0.224, 0.225])
    
    idx = eval(args.idx)
    correct_idx = idx[:len(idx) // 2]
    incorrect_idx = idx[len(idx) // 2:]
    
    
    for idx in tqdm(correct_idx):
        data = dataset[int(idx)]
        image, label = data['image'], data['label']       
        rgb_img, input_tensor = transform(image)
        rgb_img = rgb_img.permute(1, 2, 0)
        input_tensor = input_tensor.cuda()

        targets = [ClassifierOutputTarget(label)]

        with GradCAM(model=model,
                     target_layers=target_layers,
                     use_cuda=True) as cam:

            grayscale_cam, pred = cam(input_tensor=input_tensor,
                                   targets=targets,
                                   aug_smooth=args.aug_smooth,
                                   eigen_smooth=args.eigen_smooth)
            
            if pred[0] != label:
                print(f"`pred != gdth` in correct_idx: {pred[0]} != {label}. Skipping idx {idx}.")

            # Here grayscale_cam has only one image in the batch
            grayscale_cam = grayscale_cam[0, :]

            cam_image = show_cam_on_image(rgb_img.detach().cpu().numpy(), grayscale_cam, use_rgb=True, image_weight=0.5, colormap=cv2.COLORMAP_TWILIGHT_SHIFTED)

            # cam_image is RGB encoded whereas "cv2.imwrite" requires BGR encoding.
            cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
            rbg_image = cv2.cvtColor((rgb_img * 255).numpy().astype(np.uint8), cv2.COLOR_RGB2BGR)
            cv2.imwrite(f'results/grad_cam/correct/grad_cam_{idx}.png', cam_image)
            cv2.imwrite(f'results/grad_cam/correct/image_{idx}[{label}].png', rbg_image)
    
    
    for idx in tqdm(incorrect_idx):
        data = dataset[int(idx)]
        image, label = data['image'], data['label']       
        rgb_img, input_tensor = transform(image)
        rgb_img = rgb_img.permute(1, 2, 0)
        input_tensor = input_tensor.cuda()

        targets = [ClassifierOutputTarget(label)]

        with GradCAM(model=model,
                     target_layers=target_layers,
                     use_cuda=True) as cam:

            grayscale_cam, pred = cam(input_tensor=input_tensor,
                                      targets=targets,
                                      aug_smooth=args.aug_smooth,
                                      eigen_smooth=args.eigen_smooth)
            
            if pred[0] == label:
                print(f"`pred == gdth` in incorrect_idx: {pred[0]} == {label}. Skipping idx {idx}.")

            # Here grayscale_cam has only one image in the batch
            grayscale_cam = grayscale_cam[0, :]

            cam_image = show_cam_on_image(rgb_img.detach().cpu().numpy(), grayscale_cam, use_rgb=True, image_weight=0.5, colormap=cv2.COLORMAP_TWILIGHT_SHIFTED)

            # cam_image is RGB encoded whereas "cv2.imwrite" requires BGR encoding.
            cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
            rbg_image = cv2.cvtColor((rgb_img * 255).numpy().astype(np.uint8), cv2.COLOR_RGB2BGR)
            cv2.imwrite(f'results/grad_cam/incorrect/grad_cam_gdth_{idx}.png', cam_image)
            cv2.imwrite(f'results/grad_cam/incorrect/image_{idx}[{label}].png', rbg_image)
    
        with GradCAM(model=model,
                     target_layers=target_layers,
                     use_cuda=True) as cam:

            grayscale_cam, pred = cam(input_tensor=input_tensor,
                                      targets=None,
                                      aug_smooth=args.aug_smooth,
                                      eigen_smooth=args.eigen_smooth)
            
            # Here grayscale_cam has only one image in the batch
            grayscale_cam = grayscale_cam[0, :]

            cam_image = show_cam_on_image(rgb_img.detach().cpu().numpy(), grayscale_cam, use_rgb=True, image_weight=0.5, colormap=cv2.COLORMAP_TWILIGHT_SHIFTED)

            # cam_image is RGB encoded whereas "cv2.imwrite" requires BGR encoding.
            cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
            cv2.imwrite(f'results/grad_cam/incorrect/grad_cam_pred_{idx}[{pred[0]}].png', cam_image)