File size: 1,219 Bytes
1e802cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26fa0fa
1e802cc
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import keras
from keras.models import load_model
import gradio as gr
import cv2

my_model=load_model('Final_Chicken_disease_model.h5',compile=True)
auth_model=load_model('auth_model.h5',compile=True)
name_disease={0:'Coccidiosis',1:'Healthy',2:'New Castle Disease',3:'Salmonella'}
result={0:'Critical',1:'No issue',2:'Critical',3:'Critical'}
recommend={0:'Panadol',1:'You have no need Medicine',2:'Percetamol',3:'Ponston'}


def predict(image):
  image_check=cv2.resize(image,(224,224))
  indx=auth_model.predict(image_check.reshape(1,224,224,3)).argmax()
  if indx==0:
      image=cv2.resize(image,(224,224))
      indx=my_model.predict(image.reshape(1,224,224,3)).argmax()
      name=name_disease.get(indx)
      status=result.get(indx)
      recom=recommend.get(indx)
      return name,status,recom
  else:
      name='Unkown Image'
      status='N/A'
      recom='N/A'
      return name,status,recom


interface=gr.Interface(fn=predict,inputs=[gr.Image(label='upload Image')],outputs=[gr.components.Textbox(label="Disease Name"),gr.components.Textbox(label="result"),gr.components.Textbox(label='Medicine Recommend')],
                      examples=[['disease.jpg'],['ncd.jpg']])
interface.launch(debug=True)